Optimal. Leaf size=20 \[ \left (5-\frac {x}{x+\frac {\log (x)}{10 e^2}}\right )^2 \]
________________________________________________________________________________________
Rubi [F] time = 0.49, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {800 e^4 x+\left (100 e^2-800 e^4 x\right ) \log (x)-100 e^2 \log ^2(x)}{1000 e^6 x^3+300 e^4 x^2 \log (x)+30 e^2 x \log ^2(x)+\log ^3(x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {100 e^2 (1-\log (x)) \left (8 e^2 x+\log (x)\right )}{\left (10 e^2 x+\log (x)\right )^3} \, dx\\ &=\left (100 e^2\right ) \int \frac {(1-\log (x)) \left (8 e^2 x+\log (x)\right )}{\left (10 e^2 x+\log (x)\right )^3} \, dx\\ &=\left (100 e^2\right ) \int \left (\frac {1}{-10 e^2 x-\log (x)}-\frac {2 e^2 x \left (1+10 e^2 x\right )}{\left (10 e^2 x+\log (x)\right )^3}+\frac {1+12 e^2 x}{\left (10 e^2 x+\log (x)\right )^2}\right ) \, dx\\ &=\left (100 e^2\right ) \int \frac {1}{-10 e^2 x-\log (x)} \, dx+\left (100 e^2\right ) \int \frac {1+12 e^2 x}{\left (10 e^2 x+\log (x)\right )^2} \, dx-\left (200 e^4\right ) \int \frac {x \left (1+10 e^2 x\right )}{\left (10 e^2 x+\log (x)\right )^3} \, dx\\ &=\left (100 e^2\right ) \int \frac {1}{-10 e^2 x-\log (x)} \, dx+\left (100 e^2\right ) \int \left (\frac {1}{\left (10 e^2 x+\log (x)\right )^2}+\frac {12 e^2 x}{\left (10 e^2 x+\log (x)\right )^2}\right ) \, dx-\left (200 e^4\right ) \int \left (\frac {x}{\left (10 e^2 x+\log (x)\right )^3}+\frac {10 e^2 x^2}{\left (10 e^2 x+\log (x)\right )^3}\right ) \, dx\\ &=\left (100 e^2\right ) \int \frac {1}{-10 e^2 x-\log (x)} \, dx+\left (100 e^2\right ) \int \frac {1}{\left (10 e^2 x+\log (x)\right )^2} \, dx-\left (200 e^4\right ) \int \frac {x}{\left (10 e^2 x+\log (x)\right )^3} \, dx+\left (1200 e^4\right ) \int \frac {x}{\left (10 e^2 x+\log (x)\right )^2} \, dx-\left (2000 e^6\right ) \int \frac {x^2}{\left (10 e^2 x+\log (x)\right )^3} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.11, size = 26, normalized size = 1.30 \begin {gather*} -\frac {100 e^2 x \left (9 e^2 x+\log (x)\right )}{\left (10 e^2 x+\log (x)\right )^2} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.69, size = 37, normalized size = 1.85 \begin {gather*} -\frac {100 \, {\left (9 \, x^{2} e^{4} + x e^{2} \log \relax (x)\right )}}{100 \, x^{2} e^{4} + 20 \, x e^{2} \log \relax (x) + \log \relax (x)^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.43, size = 37, normalized size = 1.85 \begin {gather*} -\frac {100 \, {\left (9 \, x^{2} e^{4} + x e^{2} \log \relax (x)\right )}}{100 \, x^{2} e^{4} + 20 \, x e^{2} \log \relax (x) + \log \relax (x)^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.08, size = 24, normalized size = 1.20
method | result | size |
risch | \(-\frac {100 \left (9 \,{\mathrm e}^{2} x +\ln \relax (x )\right ) {\mathrm e}^{2} x}{\left (10 \,{\mathrm e}^{2} x +\ln \relax (x )\right )^{2}}\) | \(24\) |
norman | \(\frac {-900 x^{2} {\mathrm e}^{4}-100 x \,{\mathrm e}^{2} \ln \relax (x )}{\left (10 \,{\mathrm e}^{2} x +\ln \relax (x )\right )^{2}}\) | \(29\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 2.00, size = 37, normalized size = 1.85 \begin {gather*} -\frac {100 \, {\left (9 \, x^{2} e^{4} + x e^{2} \log \relax (x)\right )}}{100 \, x^{2} e^{4} + 20 \, x e^{2} \log \relax (x) + \log \relax (x)^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.03, size = 23, normalized size = 1.15 \begin {gather*} -\frac {100\,x\,{\mathrm {e}}^2\,\left (\ln \relax (x)+9\,x\,{\mathrm {e}}^2\right )}{{\left (\ln \relax (x)+10\,x\,{\mathrm {e}}^2\right )}^2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.13, size = 42, normalized size = 2.10 \begin {gather*} \frac {- 900 x^{2} e^{4} - 100 x e^{2} \log {\relax (x )}}{100 x^{2} e^{4} + 20 x e^{2} \log {\relax (x )} + \log {\relax (x )}^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________