Optimal. Leaf size=25 \[ \frac {e^x}{x+\frac {2 x}{4-\log (\log (5) (4+\log (25)))}} \]
________________________________________________________________________________________
Rubi [A] time = 0.07, antiderivative size = 33, normalized size of antiderivative = 1.32, number of steps used = 7, number of rules used = 5, integrand size = 52, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.096, Rules used = {6, 12, 14, 2177, 2178} \begin {gather*} \frac {e^x (4-\log (\log (5) (4+\log (25))))}{x (6-\log (\log (5) (4+\log (25))))} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 6
Rule 12
Rule 14
Rule 2177
Rule 2178
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e^x (4-4 x)+e^x (-1+x) \log (4 \log (5)+\log (5) \log (25))}{x^2 (-6+\log (4 \log (5)+\log (5) \log (25)))} \, dx\\ &=\frac {\int \frac {e^x (4-4 x)+e^x (-1+x) \log (4 \log (5)+\log (5) \log (25))}{x^2} \, dx}{-6+\log (4 \log (5)+\log (5) \log (25))}\\ &=\frac {\int \left (\frac {4 e^x \left (1-\frac {1}{4} \log (\log (5) (4+\log (25)))\right )}{x^2}-\frac {4 e^x \left (1-\frac {1}{4} \log (\log (5) (4+\log (25)))\right )}{x}\right ) \, dx}{-6+\log (4 \log (5)+\log (5) \log (25))}\\ &=-\frac {(4-\log (\log (5) (4+\log (25)))) \int \frac {e^x}{x^2} \, dx}{6-\log (\log (5) (4+\log (25)))}+\frac {(4-\log (\log (5) (4+\log (25)))) \int \frac {e^x}{x} \, dx}{6-\log (\log (5) (4+\log (25)))}\\ &=\frac {e^x (4-\log (\log (5) (4+\log (25))))}{x (6-\log (\log (5) (4+\log (25))))}+\frac {\text {Ei}(x) (4-\log (\log (5) (4+\log (25))))}{6-\log (\log (5) (4+\log (25)))}-\frac {(4-\log (\log (5) (4+\log (25)))) \int \frac {e^x}{x} \, dx}{6-\log (\log (5) (4+\log (25)))}\\ &=\frac {e^x (4-\log (\log (5) (4+\log (25))))}{x (6-\log (\log (5) (4+\log (25))))}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.01, size = 29, normalized size = 1.16 \begin {gather*} \frac {e^x (-4+\log (\log (5) (4+\log (25))))}{x (-6+\log (\log (5) (4+\log (25))))} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.97, size = 41, normalized size = 1.64 \begin {gather*} \frac {e^{x} \log \left (2 \, \log \relax (5)^{2} + 4 \, \log \relax (5)\right ) - 4 \, e^{x}}{x \log \left (2 \, \log \relax (5)^{2} + 4 \, \log \relax (5)\right ) - 6 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.20, size = 41, normalized size = 1.64 \begin {gather*} \frac {e^{x} \log \left (2 \, \log \relax (5)^{2} + 4 \, \log \relax (5)\right ) - 4 \, e^{x}}{x \log \left (2 \, \log \relax (5)^{2} + 4 \, \log \relax (5)\right ) - 6 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.14, size = 33, normalized size = 1.32
method | result | size |
risch | \(\frac {\left (\ln \relax (2)+\ln \left (\ln \relax (5)\right )+\ln \left (2+\ln \relax (5)\right )-4\right ) {\mathrm e}^{x}}{x \left (\ln \relax (2)+\ln \left (\ln \relax (5)\right )+\ln \left (2+\ln \relax (5)\right )-6\right )}\) | \(33\) |
gosper | \(\frac {{\mathrm e}^{x} \left (\ln \left (2 \ln \relax (5)^{2}+4 \ln \relax (5)\right )-4\right )}{x \left (\ln \left (2 \ln \relax (5)^{2}+4 \ln \relax (5)\right )-6\right )}\) | \(37\) |
norman | \(\frac {\left (\ln \relax (2)+\ln \left (\ln \relax (5)^{2}+2 \ln \relax (5)\right )-4\right ) {\mathrm e}^{x}}{\left (\ln \relax (2)+\ln \left (\ln \relax (5)^{2}+2 \ln \relax (5)\right )-6\right ) x}\) | \(37\) |
default | \(-\frac {4 \,{\mathrm e}^{x}}{x \left (\ln \relax (2)+\ln \left (\ln \relax (5)^{2}+2 \ln \relax (5)\right )-6\right )}+\frac {\ln \relax (2) {\mathrm e}^{x}}{\left (\ln \relax (2)+\ln \left (\ln \relax (5)^{2}+2 \ln \relax (5)\right )-6\right ) x}+\frac {\ln \left (\ln \relax (5)^{2}+2 \ln \relax (5)\right ) {\mathrm e}^{x}}{\left (\ln \relax (2)+\ln \left (\ln \relax (5)^{2}+2 \ln \relax (5)\right )-6\right ) x}\) | \(81\) |
meijerg | \(\frac {\left (\ln \left (2 \ln \relax (5)^{2}+4 \ln \relax (5)\right )-4\right ) \left (\ln \relax (x )+i \pi -\ln \left (-x \right )-\expIntegralEi \left (1, -x \right )\right )}{\ln \left (2 \ln \relax (5)^{2}+4 \ln \relax (5)\right )-6}-\frac {\left (-\ln \left (2 \ln \relax (5)^{2}+4 \ln \relax (5)\right )+4\right ) \left (\frac {1}{x}+1-\ln \relax (x )-i \pi -\frac {2 x +2}{2 x}+\frac {{\mathrm e}^{x}}{x}+\ln \left (-x \right )+\expIntegralEi \left (1, -x \right )\right )}{\ln \left (2 \ln \relax (5)^{2}+4 \ln \relax (5)\right )-6}\) | \(125\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [C] time = 0.84, size = 98, normalized size = 3.92 \begin {gather*} \frac {{\rm Ei}\relax (x) \log \left (2 \, \log \relax (5)^{2} + 4 \, \log \relax (5)\right )}{\log \left (2 \, {\left (\log \relax (5) + 2\right )} \log \relax (5)\right ) - 6} - \frac {\Gamma \left (-1, -x\right ) \log \left (2 \, \log \relax (5)^{2} + 4 \, \log \relax (5)\right )}{\log \left (2 \, {\left (\log \relax (5) + 2\right )} \log \relax (5)\right ) - 6} - \frac {4 \, {\rm Ei}\relax (x)}{\log \left (2 \, {\left (\log \relax (5) + 2\right )} \log \relax (5)\right ) - 6} + \frac {4 \, \Gamma \left (-1, -x\right )}{\log \left (2 \, {\left (\log \relax (5) + 2\right )} \log \relax (5)\right ) - 6} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.10, size = 32, normalized size = 1.28 \begin {gather*} \frac {{\mathrm {e}}^x\,\left (\ln \left (\ln \left (625\right )+2\,{\ln \relax (5)}^2\right )-4\right )}{x\,\left (\ln \left (\ln \left (625\right )+2\,{\ln \relax (5)}^2\right )-6\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.17, size = 42, normalized size = 1.68 \begin {gather*} \frac {\left (-4 + \log {\left (\log {\relax (5 )} \right )} + \log {\relax (2 )} + \log {\left (\log {\relax (5 )} + 2 \right )}\right ) e^{x}}{- 6 x + x \log {\left (\log {\relax (5 )} \right )} + x \log {\relax (2 )} + x \log {\left (\log {\relax (5 )} + 2 \right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________