Optimal. Leaf size=32 \[ \frac {27}{2 x-\frac {x \left (e^{4/x}-\log (2)\right )}{2-x^2}} \]
________________________________________________________________________________________
Rubi [F] time = 2.98, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-216 x+216 x^3-54 x^5+e^{4/x} \left (-216+54 x+108 x^2+27 x^3\right )+\left (-54 x-27 x^3\right ) \log (2)}{16 x^3+e^{8/x} x^3-16 x^5+4 x^7+\left (8 x^3-4 x^5\right ) \log (2)+x^3 \log ^2(2)+e^{4/x} \left (-8 x^3+4 x^5-2 x^3 \log (2)\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-216 x+216 x^3-54 x^5+e^{4/x} \left (-216+54 x+108 x^2+27 x^3\right )+\left (-54 x-27 x^3\right ) \log (2)}{e^{8/x} x^3-16 x^5+4 x^7+\left (8 x^3-4 x^5\right ) \log (2)+e^{4/x} \left (-8 x^3+4 x^5-2 x^3 \log (2)\right )+x^3 \left (16+\log ^2(2)\right )} \, dx\\ &=\int \frac {27 \left (e^{4/x} \left (-8+2 x+4 x^2+x^3\right )-x \left (8+2 x^4+x^2 (-8+\log (2))+\log (4)\right )\right )}{x^3 \left (e^{4/x}+2 x^2-4 \left (1+\frac {\log (2)}{4}\right )\right )^2} \, dx\\ &=27 \int \frac {e^{4/x} \left (-8+2 x+4 x^2+x^3\right )-x \left (8+2 x^4+x^2 (-8+\log (2))+\log (4)\right )}{x^3 \left (e^{4/x}+2 x^2-4 \left (1+\frac {\log (2)}{4}\right )\right )^2} \, dx\\ &=27 \int \left (\frac {8 x^3-8 x^4-4 x^5+32 x^2 \left (1+\frac {\log (2)}{8}\right )-32 \left (1+\frac {\log (2)}{4}\right )}{x^3 \left (e^{4/x}+2 x^2-4 \left (1+\frac {\log (2)}{4}\right )\right )^2}+\frac {-8+2 x+4 x^2+x^3}{x^3 \left (e^{4/x}+2 x^2-4 \left (1+\frac {\log (2)}{4}\right )\right )}\right ) \, dx\\ &=27 \int \frac {8 x^3-8 x^4-4 x^5+32 x^2 \left (1+\frac {\log (2)}{8}\right )-32 \left (1+\frac {\log (2)}{4}\right )}{x^3 \left (e^{4/x}+2 x^2-4 \left (1+\frac {\log (2)}{4}\right )\right )^2} \, dx+27 \int \frac {-8+2 x+4 x^2+x^3}{x^3 \left (e^{4/x}+2 x^2-4 \left (1+\frac {\log (2)}{4}\right )\right )} \, dx\\ &=27 \int \left (\frac {1}{e^{4/x}+2 x^2-4 \left (1+\frac {\log (2)}{4}\right )}+\frac {2}{x^2 \left (e^{4/x}+2 x^2-4 \left (1+\frac {\log (2)}{4}\right )\right )}+\frac {4}{x \left (e^{4/x}+2 x^2-4 \left (1+\frac {\log (2)}{4}\right )\right )}+\frac {8}{x^3 \left (-e^{4/x}-2 x^2+4 \left (1+\frac {\log (2)}{4}\right )\right )}\right ) \, dx+27 \int \frac {4 \left (2-x^2\right ) \left (-4+2 x^2+x^3-\log (2)\right )}{x^3 \left (e^{4/x}+2 x^2-4 \left (1+\frac {\log (2)}{4}\right )\right )^2} \, dx\\ &=27 \int \frac {1}{e^{4/x}+2 x^2-4 \left (1+\frac {\log (2)}{4}\right )} \, dx+54 \int \frac {1}{x^2 \left (e^{4/x}+2 x^2-4 \left (1+\frac {\log (2)}{4}\right )\right )} \, dx+108 \int \frac {1}{x \left (e^{4/x}+2 x^2-4 \left (1+\frac {\log (2)}{4}\right )\right )} \, dx+108 \int \frac {\left (2-x^2\right ) \left (-4+2 x^2+x^3-\log (2)\right )}{x^3 \left (e^{4/x}+2 x^2-4 \left (1+\frac {\log (2)}{4}\right )\right )^2} \, dx+216 \int \frac {1}{x^3 \left (-e^{4/x}-2 x^2+4 \left (1+\frac {\log (2)}{4}\right )\right )} \, dx\\ &=27 \int \frac {1}{e^{4/x}+2 x^2-4 \left (1+\frac {\log (2)}{4}\right )} \, dx+54 \int \frac {1}{x^2 \left (e^{4/x}+2 x^2-4 \left (1+\frac {\log (2)}{4}\right )\right )} \, dx+108 \int \frac {1}{x \left (e^{4/x}+2 x^2-4 \left (1+\frac {\log (2)}{4}\right )\right )} \, dx+108 \int \left (\frac {2}{\left (e^{4/x}+2 x^2-4 \left (1+\frac {\log (2)}{4}\right )\right )^2}-\frac {2 x}{\left (e^{4/x}+2 x^2-4 \left (1+\frac {\log (2)}{4}\right )\right )^2}-\frac {x^2}{\left (e^{4/x}+2 x^2-4 \left (1+\frac {\log (2)}{4}\right )\right )^2}+\frac {2 (-4-\log (2))}{x^3 \left (e^{4/x}+2 x^2-4 \left (1+\frac {\log (2)}{4}\right )\right )^2}+\frac {8+\log (2)}{x \left (e^{4/x}+2 x^2-4 \left (1+\frac {\log (2)}{4}\right )\right )^2}\right ) \, dx+216 \int \frac {1}{x^3 \left (-e^{4/x}-2 x^2+4 \left (1+\frac {\log (2)}{4}\right )\right )} \, dx\\ &=27 \int \frac {1}{e^{4/x}+2 x^2-4 \left (1+\frac {\log (2)}{4}\right )} \, dx+54 \int \frac {1}{x^2 \left (e^{4/x}+2 x^2-4 \left (1+\frac {\log (2)}{4}\right )\right )} \, dx-108 \int \frac {x^2}{\left (e^{4/x}+2 x^2-4 \left (1+\frac {\log (2)}{4}\right )\right )^2} \, dx+108 \int \frac {1}{x \left (e^{4/x}+2 x^2-4 \left (1+\frac {\log (2)}{4}\right )\right )} \, dx+216 \int \frac {1}{\left (e^{4/x}+2 x^2-4 \left (1+\frac {\log (2)}{4}\right )\right )^2} \, dx-216 \int \frac {x}{\left (e^{4/x}+2 x^2-4 \left (1+\frac {\log (2)}{4}\right )\right )^2} \, dx+216 \int \frac {1}{x^3 \left (-e^{4/x}-2 x^2+4 \left (1+\frac {\log (2)}{4}\right )\right )} \, dx-(216 (4+\log (2))) \int \frac {1}{x^3 \left (e^{4/x}+2 x^2-4 \left (1+\frac {\log (2)}{4}\right )\right )^2} \, dx+(108 (8+\log (2))) \int \frac {1}{x \left (e^{4/x}+2 x^2-4 \left (1+\frac {\log (2)}{4}\right )\right )^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [B] time = 0.72, size = 71, normalized size = 2.22 \begin {gather*} \frac {27 \left (32-8 x^3+8 x^4+4 x^5-4 x^2 (8+\log (2))+\log (256)\right )}{4 x \left (-4+e^{4/x}+2 x^2-\log (2)\right ) \left (-4+2 x^2+x^3-\log (2)\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.93, size = 31, normalized size = 0.97 \begin {gather*} \frac {27 \, {\left (x^{2} - 2\right )}}{2 \, x^{3} + x e^{\frac {4}{x}} - x \log \relax (2) - 4 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F(-1)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.53, size = 30, normalized size = 0.94
method | result | size |
risch | \(-\frac {27 \left (x^{2}-2\right )}{x \left (-2 x^{2}+\ln \relax (2)-{\mathrm e}^{\frac {4}{x}}+4\right )}\) | \(30\) |
norman | \(\frac {-27 x^{3}+54 x}{x^{2} \left (-2 x^{2}+\ln \relax (2)-{\mathrm e}^{\frac {4}{x}}+4\right )}\) | \(33\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.55, size = 30, normalized size = 0.94 \begin {gather*} \frac {27 \, {\left (x^{2} - 2\right )}}{2 \, x^{3} - x {\left (\log \relax (2) + 4\right )} + x e^{\frac {4}{x}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.03 \begin {gather*} \int -\frac {216\,x+\ln \relax (2)\,\left (27\,x^3+54\,x\right )-{\mathrm {e}}^{4/x}\,\left (27\,x^3+108\,x^2+54\,x-216\right )-216\,x^3+54\,x^5}{x^3\,{\ln \relax (2)}^2-{\mathrm {e}}^{4/x}\,\left (2\,x^3\,\ln \relax (2)+8\,x^3-4\,x^5\right )+\ln \relax (2)\,\left (8\,x^3-4\,x^5\right )+x^3\,{\mathrm {e}}^{8/x}+16\,x^3-16\,x^5+4\,x^7} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.17, size = 26, normalized size = 0.81 \begin {gather*} \frac {27 x^{2} - 54}{2 x^{3} + x e^{\frac {4}{x}} - 4 x - x \log {\relax (2 )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________