Optimal. Leaf size=21 \[ x \left (-x^2+\frac {\log \left (9+x^5\right )}{\log (2)}\right )^2 \]
________________________________________________________________________________________
Rubi [B] time = 10.72, antiderivative size = 568, normalized size of antiderivative = 27.05, number of steps used = 223, number of rules used = 25, integrand size = 77, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.325, Rules used = {12, 6725, 1836, 321, 293, 634, 618, 204, 628, 31, 2528, 2448, 201, 2471, 2462, 260, 2416, 2394, 2393, 2391, 2390, 2301, 2455, 2450, 2476} \begin {gather*} x^5+\frac {x \log ^2\left (x^5+9\right )}{\log ^2(2)}+\frac {10 x^3 \log (8)}{9 \log ^2(2)}-\frac {10 x^3}{3 \log (2)}+\frac {\sqrt [5]{3} \left (1+\sqrt {5}\right ) \log (8) \log \left (x^2-\frac {1}{2} 3^{2/5} \left (1-\sqrt {5}\right ) x+3^{4/5}\right )}{2 \log ^2(2)}+\frac {\sqrt [5]{3} \left (1-\sqrt {5}\right ) \log (8) \log \left (x^2-\frac {1}{2} 3^{2/5} \left (1+\sqrt {5}\right ) x+3^{4/5}\right )}{2 \log ^2(2)}-\frac {3 \sqrt [5]{3} \left (1+\sqrt {5}\right ) \log \left (x^2-\frac {1}{2} 3^{2/5} \left (1-\sqrt {5}\right ) x+3^{4/5}\right )}{2 \log (2)}-\frac {3 \sqrt [5]{3} \left (1-\sqrt {5}\right ) \log \left (x^2-\frac {1}{2} 3^{2/5} \left (1+\sqrt {5}\right ) x+3^{4/5}\right )}{2 \log (2)}-\frac {2 x^3 \log (8) \log \left (x^5+9\right )}{3 \log ^2(2)}-\frac {2 \sqrt [5]{3} \log (8) \log \left (x+3^{2/5}\right )}{\log ^2(2)}+\frac {6 \sqrt [5]{3} \log \left (x+3^{2/5}\right )}{\log (2)}-\frac {2 \sqrt [5]{3} \sqrt {10} \log (8) \tan ^{-1}\left (\frac {3^{2/5} \left (1-\sqrt {5}\right )-4 x}{3^{2/5} \sqrt {2 \left (5+\sqrt {5}\right )}}\right )}{\sqrt {5+\sqrt {5}} \log ^2(2)}+\frac {\sqrt [5]{3} \sqrt {2 \left (5+\sqrt {5}\right )} \log (8) \tan ^{-1}\left (\frac {\sqrt {\frac {1}{10} \left (5+\sqrt {5}\right )} \left (3^{2/5} \left (1+\sqrt {5}\right )-4 x\right )}{2\ 3^{2/5}}\right )}{\log ^2(2)}+\frac {6 \sqrt [5]{3} \sqrt {10} \tan ^{-1}\left (\frac {3^{2/5} \left (1-\sqrt {5}\right )-4 x}{3^{2/5} \sqrt {2 \left (5+\sqrt {5}\right )}}\right )}{\sqrt {5+\sqrt {5}} \log (2)}-\frac {3 \sqrt [5]{3} \sqrt {2 \left (5+\sqrt {5}\right )} \tan ^{-1}\left (\frac {\sqrt {\frac {1}{10} \left (5+\sqrt {5}\right )} \left (3^{2/5} \left (1+\sqrt {5}\right )-4 x\right )}{2\ 3^{2/5}}\right )}{\log (2)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 31
Rule 201
Rule 204
Rule 260
Rule 293
Rule 321
Rule 618
Rule 628
Rule 634
Rule 1836
Rule 2301
Rule 2390
Rule 2391
Rule 2393
Rule 2394
Rule 2416
Rule 2448
Rule 2450
Rule 2455
Rule 2462
Rule 2471
Rule 2476
Rule 2528
Rule 6725
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {\int \frac {-10 x^7 \log (2)+\left (45 x^4+5 x^9\right ) \log ^2(2)+\left (10 x^5+\left (-54 x^2-6 x^7\right ) \log (2)\right ) \log \left (9+x^5\right )+\left (9+x^5\right ) \log ^2\left (9+x^5\right )}{9+x^5} \, dx}{\log ^2(2)}\\ &=\frac {\int \left (\frac {5 x^4 \log (2) \left (-2 x^3+x^5 \log (2)+\log (512)\right )}{9+x^5}-\frac {2 x^2 \left (-5 x^3+27 \log (2)+x^5 \log (8)\right ) \log \left (9+x^5\right )}{9+x^5}+\log ^2\left (9+x^5\right )\right ) \, dx}{\log ^2(2)}\\ &=\frac {\int \log ^2\left (9+x^5\right ) \, dx}{\log ^2(2)}-\frac {2 \int \frac {x^2 \left (-5 x^3+27 \log (2)+x^5 \log (8)\right ) \log \left (9+x^5\right )}{9+x^5} \, dx}{\log ^2(2)}+\frac {5 \int \frac {x^4 \left (-2 x^3+x^5 \log (2)+\log (512)\right )}{9+x^5} \, dx}{\log (2)}\\ &=x^5+\frac {x \log ^2\left (9+x^5\right )}{\log ^2(2)}-\frac {2 \int \left (-5 \log \left (9+x^5\right )+\frac {45 \log \left (9+x^5\right )}{9+x^5}+x^2 \log (8) \log \left (9+x^5\right )\right ) \, dx}{\log ^2(2)}-\frac {10 \int \frac {x^5 \log \left (9+x^5\right )}{9+x^5} \, dx}{\log ^2(2)}+\frac {\int -\frac {10 x^7}{9+x^5} \, dx}{\log (2)}\\ &=x^5+\frac {x \log ^2\left (9+x^5\right )}{\log ^2(2)}+\frac {10 \int \log \left (9+x^5\right ) \, dx}{\log ^2(2)}-\frac {10 \int \left (\log \left (9+x^5\right )-\frac {9 \log \left (9+x^5\right )}{9+x^5}\right ) \, dx}{\log ^2(2)}-\frac {90 \int \frac {\log \left (9+x^5\right )}{9+x^5} \, dx}{\log ^2(2)}-\frac {10 \int \frac {x^7}{9+x^5} \, dx}{\log (2)}-\frac {(2 \log (8)) \int x^2 \log \left (9+x^5\right ) \, dx}{\log ^2(2)}\\ &=x^5-\frac {10 x^3}{3 \log (2)}+\frac {10 x \log \left (9+x^5\right )}{\log ^2(2)}-\frac {2 x^3 \log (8) \log \left (9+x^5\right )}{3 \log ^2(2)}+\frac {x \log ^2\left (9+x^5\right )}{\log ^2(2)}-\frac {10 \int \log \left (9+x^5\right ) \, dx}{\log ^2(2)}-\frac {50 \int \frac {x^5}{9+x^5} \, dx}{\log ^2(2)}+\frac {90 \int \frac {\log \left (9+x^5\right )}{9+x^5} \, dx}{\log ^2(2)}-\frac {90 \int \left (-\frac {\log \left (9+x^5\right )}{15\ 3^{3/5} \left (-3^{2/5}-x\right )}-\frac {\log \left (9+x^5\right )}{15\ 3^{3/5} \left (-3^{2/5}+\sqrt [5]{-1} x\right )}-\frac {\log \left (9+x^5\right )}{15\ 3^{3/5} \left (-3^{2/5}-(-1)^{2/5} x\right )}-\frac {\log \left (9+x^5\right )}{15\ 3^{3/5} \left (-3^{2/5}+(-1)^{3/5} x\right )}-\frac {\log \left (9+x^5\right )}{15\ 3^{3/5} \left (-3^{2/5}-(-1)^{4/5} x\right )}\right ) \, dx}{\log ^2(2)}+\frac {90 \int \frac {x^2}{9+x^5} \, dx}{\log (2)}+\frac {(10 \log (8)) \int \frac {x^7}{9+x^5} \, dx}{3 \log ^2(2)}\\ &=x^5-\frac {50 x}{\log ^2(2)}-\frac {10 x^3}{3 \log (2)}+\frac {10 x^3 \log (8)}{9 \log ^2(2)}-\frac {2 x^3 \log (8) \log \left (9+x^5\right )}{3 \log ^2(2)}+\frac {x \log ^2\left (9+x^5\right )}{\log ^2(2)}+\frac {50 \int \frac {x^5}{9+x^5} \, dx}{\log ^2(2)}+\frac {90 \int \left (-\frac {\log \left (9+x^5\right )}{15\ 3^{3/5} \left (-3^{2/5}-x\right )}-\frac {\log \left (9+x^5\right )}{15\ 3^{3/5} \left (-3^{2/5}+\sqrt [5]{-1} x\right )}-\frac {\log \left (9+x^5\right )}{15\ 3^{3/5} \left (-3^{2/5}-(-1)^{2/5} x\right )}-\frac {\log \left (9+x^5\right )}{15\ 3^{3/5} \left (-3^{2/5}+(-1)^{3/5} x\right )}-\frac {\log \left (9+x^5\right )}{15\ 3^{3/5} \left (-3^{2/5}-(-1)^{4/5} x\right )}\right ) \, dx}{\log ^2(2)}+\frac {450 \int \frac {1}{9+x^5} \, dx}{\log ^2(2)}+\frac {\left (2\ 3^{2/5}\right ) \int \frac {\log \left (9+x^5\right )}{-3^{2/5}-x} \, dx}{\log ^2(2)}+\frac {\left (2\ 3^{2/5}\right ) \int \frac {\log \left (9+x^5\right )}{-3^{2/5}+\sqrt [5]{-1} x} \, dx}{\log ^2(2)}+\frac {\left (2\ 3^{2/5}\right ) \int \frac {\log \left (9+x^5\right )}{-3^{2/5}-(-1)^{2/5} x} \, dx}{\log ^2(2)}+\frac {\left (2\ 3^{2/5}\right ) \int \frac {\log \left (9+x^5\right )}{-3^{2/5}+(-1)^{3/5} x} \, dx}{\log ^2(2)}+\frac {\left (2\ 3^{2/5}\right ) \int \frac {\log \left (9+x^5\right )}{-3^{2/5}-(-1)^{4/5} x} \, dx}{\log ^2(2)}+\frac {\left (6 \sqrt [5]{3}\right ) \int \frac {1}{3^{2/5}+x} \, dx}{\log (2)}+\frac {\left (12 \sqrt [5]{3}\right ) \int \frac {\frac {1}{4} 3^{2/5} \left (-1-\sqrt {5}\right )-\frac {1}{4} \left (1+\sqrt {5}\right ) x}{3^{4/5}-\frac {1}{2} 3^{2/5} \left (1-\sqrt {5}\right ) x+x^2} \, dx}{\log (2)}+\frac {\left (12 \sqrt [5]{3}\right ) \int \frac {\frac {1}{4} 3^{2/5} \left (-1+\sqrt {5}\right )-\frac {1}{4} \left (1-\sqrt {5}\right ) x}{3^{4/5}-\frac {1}{2} 3^{2/5} \left (1+\sqrt {5}\right ) x+x^2} \, dx}{\log (2)}-\frac {(30 \log (8)) \int \frac {x^2}{9+x^5} \, dx}{\log ^2(2)}\\ &=\text {Rest of rules removed due to large latex content} \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [C] time = 0.61, size = 131, normalized size = 6.24 \begin {gather*} \frac {x^5 \log ^2(2)+\frac {10}{9} x^3 \log (8)-\frac {10}{9} x^3 \, _2F_1\left (\frac {3}{5},1;\frac {8}{5};-\frac {x^5}{9}\right ) \log (8)-\frac {2}{3} x^3 \log (32)+\frac {1}{27} x^3 \, _2F_1\left (\frac {3}{5},1;\frac {8}{5};-\frac {x^5}{9}\right ) \log (1237940039285380274899124224)-9 \log ^2(2) \log \left (9+x^5\right )-\frac {2}{3} x^3 \log (8) \log \left (9+x^5\right )+\frac {1}{5} \log (32) \log (512) \log \left (9+x^5\right )+x \log ^2\left (9+x^5\right )}{\log ^2(2)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.73, size = 37, normalized size = 1.76 \begin {gather*} \frac {x^{5} \log \relax (2)^{2} - 2 \, x^{3} \log \relax (2) \log \left (x^{5} + 9\right ) + x \log \left (x^{5} + 9\right )^{2}}{\log \relax (2)^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.78, size = 37, normalized size = 1.76 \begin {gather*} \frac {x^{5} \log \relax (2)^{2} - 2 \, x^{3} \log \relax (2) \log \left (x^{5} + 9\right ) + x \log \left (x^{5} + 9\right )^{2}}{\log \relax (2)^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.06, size = 34, normalized size = 1.62
method | result | size |
risch | \(x^{5}-\frac {2 x^{3} \ln \left (x^{5}+9\right )}{\ln \relax (2)}+\frac {x \ln \left (x^{5}+9\right )^{2}}{\ln \relax (2)^{2}}\) | \(34\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [F(-2)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: RuntimeError} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.40, size = 22, normalized size = 1.05 \begin {gather*} \frac {x\,{\left (\ln \left (x^5+9\right )-x^2\,\ln \relax (2)\right )}^2}{{\ln \relax (2)}^2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.20, size = 32, normalized size = 1.52 \begin {gather*} x^{5} - \frac {2 x^{3} \log {\left (x^{5} + 9 \right )}}{\log {\relax (2 )}} + \frac {x \log {\left (x^{5} + 9 \right )}^{2}}{\log {\relax (2 )}^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________