Optimal. Leaf size=24 \[ x+\left (3-\frac {e^{e^x} \log \left (2 \left (e^x+x\right )\right )}{x}\right )^2 \]
________________________________________________________________________________________
Rubi [F] time = 7.26, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {e^x x^3+x^4+e^{e^x} \left (-6 x^2-6 e^x x^2\right )+\left (e^{2 e^x} \left (2 x+2 e^x x\right )+e^{e^x} \left (6 x^2-6 e^{2 x} x^2+e^x \left (6 x-6 x^3\right )\right )\right ) \log \left (2 e^x+2 x\right )+e^{2 e^x} \left (-2 x+2 e^{2 x} x+e^x \left (-2+2 x^2\right )\right ) \log ^2\left (2 e^x+2 x\right )}{e^x x^3+x^4} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (-\frac {2 e^{e^x} (-1+x) \left (-3 x+e^{e^x} \log \left (2 \left (e^x+x\right )\right )\right )}{x^2 \left (e^x+x\right )}+\frac {2 e^{e^x+x} \log \left (2 \left (e^x+x\right )\right ) \left (-3 x+e^{e^x} \log \left (2 \left (e^x+x\right )\right )\right )}{x^2}+\frac {-6 e^{e^x} x^2+x^3+6 e^{e^x} x \log \left (2 \left (e^x+x\right )\right )+2 e^{2 e^x} x \log \left (2 \left (e^x+x\right )\right )-2 e^{2 e^x} \log ^2\left (2 \left (e^x+x\right )\right )}{x^3}\right ) \, dx\\ &=-\left (2 \int \frac {e^{e^x} (-1+x) \left (-3 x+e^{e^x} \log \left (2 \left (e^x+x\right )\right )\right )}{x^2 \left (e^x+x\right )} \, dx\right )+2 \int \frac {e^{e^x+x} \log \left (2 \left (e^x+x\right )\right ) \left (-3 x+e^{e^x} \log \left (2 \left (e^x+x\right )\right )\right )}{x^2} \, dx+\int \frac {-6 e^{e^x} x^2+x^3+6 e^{e^x} x \log \left (2 \left (e^x+x\right )\right )+2 e^{2 e^x} x \log \left (2 \left (e^x+x\right )\right )-2 e^{2 e^x} \log ^2\left (2 \left (e^x+x\right )\right )}{x^3} \, dx\\ &=2 \int \left (-\frac {3 e^{e^x+x} \log \left (2 \left (e^x+x\right )\right )}{x}+\frac {e^{2 e^x+x} \log ^2\left (2 \left (e^x+x\right )\right )}{x^2}\right ) \, dx-2 \int \left (\frac {e^{e^x} \left (3 x-e^{e^x} \log \left (2 \left (e^x+x\right )\right )\right )}{x^2 \left (e^x+x\right )}-\frac {e^{e^x} \left (3 x-e^{e^x} \log \left (2 \left (e^x+x\right )\right )\right )}{x \left (e^x+x\right )}\right ) \, dx+\int \left (1-\frac {6 e^{e^x} \left (x-\log \left (2 \left (e^x+x\right )\right )\right )}{x^2}+\frac {2 e^{2 e^x} \left (x-\log \left (2 \left (e^x+x\right )\right )\right ) \log \left (2 \left (e^x+x\right )\right )}{x^3}\right ) \, dx\\ &=x+2 \int \frac {e^{2 e^x} \left (x-\log \left (2 \left (e^x+x\right )\right )\right ) \log \left (2 \left (e^x+x\right )\right )}{x^3} \, dx+2 \int \frac {e^{2 e^x+x} \log ^2\left (2 \left (e^x+x\right )\right )}{x^2} \, dx-2 \int \frac {e^{e^x} \left (3 x-e^{e^x} \log \left (2 \left (e^x+x\right )\right )\right )}{x^2 \left (e^x+x\right )} \, dx+2 \int \frac {e^{e^x} \left (3 x-e^{e^x} \log \left (2 \left (e^x+x\right )\right )\right )}{x \left (e^x+x\right )} \, dx-6 \int \frac {e^{e^x} \left (x-\log \left (2 \left (e^x+x\right )\right )\right )}{x^2} \, dx-6 \int \frac {e^{e^x+x} \log \left (2 \left (e^x+x\right )\right )}{x} \, dx\\ &=x+2 \int \frac {e^{2 e^x+x} \log ^2\left (2 \left (e^x+x\right )\right )}{x^2} \, dx-2 \int \left (\frac {3 e^{e^x}}{x \left (e^x+x\right )}-\frac {e^{2 e^x} \log \left (2 \left (e^x+x\right )\right )}{x^2 \left (e^x+x\right )}\right ) \, dx+2 \int \left (\frac {3 e^{e^x}}{e^x+x}-\frac {e^{2 e^x} \log \left (2 \left (e^x+x\right )\right )}{x \left (e^x+x\right )}\right ) \, dx+2 \int \left (\frac {e^{2 e^x} \log \left (2 \left (e^x+x\right )\right )}{x^2}-\frac {e^{2 e^x} \log ^2\left (2 \left (e^x+x\right )\right )}{x^3}\right ) \, dx-6 \int \left (\frac {e^{e^x}}{x}-\frac {e^{e^x} \log \left (2 \left (e^x+x\right )\right )}{x^2}\right ) \, dx+6 \int \frac {\left (1+e^x\right ) \int \frac {e^{e^x+x}}{x} \, dx}{e^x+x} \, dx-\left (6 \log \left (2 \left (e^x+x\right )\right )\right ) \int \frac {e^{e^x+x}}{x} \, dx\\ &=x+2 \int \frac {e^{2 e^x} \log \left (2 \left (e^x+x\right )\right )}{x^2} \, dx+2 \int \frac {e^{2 e^x} \log \left (2 \left (e^x+x\right )\right )}{x^2 \left (e^x+x\right )} \, dx-2 \int \frac {e^{2 e^x} \log \left (2 \left (e^x+x\right )\right )}{x \left (e^x+x\right )} \, dx-2 \int \frac {e^{2 e^x} \log ^2\left (2 \left (e^x+x\right )\right )}{x^3} \, dx+2 \int \frac {e^{2 e^x+x} \log ^2\left (2 \left (e^x+x\right )\right )}{x^2} \, dx-6 \int \frac {e^{e^x}}{x} \, dx+6 \int \frac {e^{e^x}}{e^x+x} \, dx-6 \int \frac {e^{e^x}}{x \left (e^x+x\right )} \, dx+6 \int \frac {e^{e^x} \log \left (2 \left (e^x+x\right )\right )}{x^2} \, dx+6 \int \left (\int \frac {e^{e^x+x}}{x} \, dx-\frac {(-1+x) \int \frac {e^{e^x+x}}{x} \, dx}{e^x+x}\right ) \, dx-\left (6 \log \left (2 \left (e^x+x\right )\right )\right ) \int \frac {e^{e^x+x}}{x} \, dx\\ &=x-2 \int \frac {e^{2 e^x} \log ^2\left (2 \left (e^x+x\right )\right )}{x^3} \, dx+2 \int \frac {e^{2 e^x+x} \log ^2\left (2 \left (e^x+x\right )\right )}{x^2} \, dx-2 \int \frac {\left (1+e^x\right ) \int \frac {e^{2 e^x}}{x^2} \, dx}{e^x+x} \, dx-2 \int \frac {\left (1+e^x\right ) \int \frac {e^{2 e^x}}{x^2 \left (e^x+x\right )} \, dx}{e^x+x} \, dx+2 \int \frac {\left (1+e^x\right ) \int \frac {e^{2 e^x}}{x \left (e^x+x\right )} \, dx}{e^x+x} \, dx-6 \int \frac {e^{e^x}}{x} \, dx+6 \int \frac {e^{e^x}}{e^x+x} \, dx-6 \int \frac {e^{e^x}}{x \left (e^x+x\right )} \, dx-6 \int \frac {\left (1+e^x\right ) \int \frac {e^{e^x}}{x^2} \, dx}{e^x+x} \, dx+6 \int \left (\int \frac {e^{e^x+x}}{x} \, dx\right ) \, dx-6 \int \frac {(-1+x) \int \frac {e^{e^x+x}}{x} \, dx}{e^x+x} \, dx+\left (2 \log \left (2 \left (e^x+x\right )\right )\right ) \int \frac {e^{2 e^x}}{x^2} \, dx+\left (2 \log \left (2 \left (e^x+x\right )\right )\right ) \int \frac {e^{2 e^x}}{x^2 \left (e^x+x\right )} \, dx-\left (2 \log \left (2 \left (e^x+x\right )\right )\right ) \int \frac {e^{2 e^x}}{x \left (e^x+x\right )} \, dx+\left (6 \log \left (2 \left (e^x+x\right )\right )\right ) \int \frac {e^{e^x}}{x^2} \, dx-\left (6 \log \left (2 \left (e^x+x\right )\right )\right ) \int \frac {e^{e^x+x}}{x} \, dx\\ &=x-2 \int \frac {e^{2 e^x} \log ^2\left (2 \left (e^x+x\right )\right )}{x^3} \, dx+2 \int \frac {e^{2 e^x+x} \log ^2\left (2 \left (e^x+x\right )\right )}{x^2} \, dx-2 \int \left (\int \frac {e^{2 e^x}}{x^2} \, dx-\frac {(-1+x) \int \frac {e^{2 e^x}}{x^2} \, dx}{e^x+x}\right ) \, dx-2 \int \left (\int \frac {e^{2 e^x}}{x^2 \left (e^x+x\right )} \, dx-\frac {(-1+x) \int \frac {e^{2 e^x}}{x^2 \left (e^x+x\right )} \, dx}{e^x+x}\right ) \, dx+2 \int \left (\int \frac {e^{2 e^x}}{x \left (e^x+x\right )} \, dx-\frac {(-1+x) \int \frac {e^{2 e^x}}{x \left (e^x+x\right )} \, dx}{e^x+x}\right ) \, dx-6 \int \frac {e^{e^x}}{x} \, dx+6 \int \frac {e^{e^x}}{e^x+x} \, dx-6 \int \frac {e^{e^x}}{x \left (e^x+x\right )} \, dx-6 \int \left (\int \frac {e^{e^x}}{x^2} \, dx-\frac {(-1+x) \int \frac {e^{e^x}}{x^2} \, dx}{e^x+x}\right ) \, dx+6 \int \left (\int \frac {e^{e^x+x}}{x} \, dx\right ) \, dx-6 \int \left (-\frac {\int \frac {e^{e^x+x}}{x} \, dx}{e^x+x}+\frac {x \int \frac {e^{e^x+x}}{x} \, dx}{e^x+x}\right ) \, dx+\left (2 \log \left (2 \left (e^x+x\right )\right )\right ) \int \frac {e^{2 e^x}}{x^2} \, dx+\left (2 \log \left (2 \left (e^x+x\right )\right )\right ) \int \frac {e^{2 e^x}}{x^2 \left (e^x+x\right )} \, dx-\left (2 \log \left (2 \left (e^x+x\right )\right )\right ) \int \frac {e^{2 e^x}}{x \left (e^x+x\right )} \, dx+\left (6 \log \left (2 \left (e^x+x\right )\right )\right ) \int \frac {e^{e^x}}{x^2} \, dx-\left (6 \log \left (2 \left (e^x+x\right )\right )\right ) \int \frac {e^{e^x+x}}{x} \, dx\\ &=x-2 \int \frac {e^{2 e^x} \log ^2\left (2 \left (e^x+x\right )\right )}{x^3} \, dx+2 \int \frac {e^{2 e^x+x} \log ^2\left (2 \left (e^x+x\right )\right )}{x^2} \, dx-2 \int \left (\int \frac {e^{2 e^x}}{x^2} \, dx\right ) \, dx+2 \int \frac {(-1+x) \int \frac {e^{2 e^x}}{x^2} \, dx}{e^x+x} \, dx-2 \int \left (\int \frac {e^{2 e^x}}{x^2 \left (e^x+x\right )} \, dx\right ) \, dx+2 \int \frac {(-1+x) \int \frac {e^{2 e^x}}{x^2 \left (e^x+x\right )} \, dx}{e^x+x} \, dx+2 \int \left (\int \frac {e^{2 e^x}}{x \left (e^x+x\right )} \, dx\right ) \, dx-2 \int \frac {(-1+x) \int \frac {e^{2 e^x}}{x \left (e^x+x\right )} \, dx}{e^x+x} \, dx-6 \int \frac {e^{e^x}}{x} \, dx+6 \int \frac {e^{e^x}}{e^x+x} \, dx-6 \int \frac {e^{e^x}}{x \left (e^x+x\right )} \, dx-6 \int \left (\int \frac {e^{e^x}}{x^2} \, dx\right ) \, dx+6 \int \frac {(-1+x) \int \frac {e^{e^x}}{x^2} \, dx}{e^x+x} \, dx+6 \int \left (\int \frac {e^{e^x+x}}{x} \, dx\right ) \, dx+6 \int \frac {\int \frac {e^{e^x+x}}{x} \, dx}{e^x+x} \, dx-6 \int \frac {x \int \frac {e^{e^x+x}}{x} \, dx}{e^x+x} \, dx+\left (2 \log \left (2 \left (e^x+x\right )\right )\right ) \int \frac {e^{2 e^x}}{x^2} \, dx+\left (2 \log \left (2 \left (e^x+x\right )\right )\right ) \int \frac {e^{2 e^x}}{x^2 \left (e^x+x\right )} \, dx-\left (2 \log \left (2 \left (e^x+x\right )\right )\right ) \int \frac {e^{2 e^x}}{x \left (e^x+x\right )} \, dx+\left (6 \log \left (2 \left (e^x+x\right )\right )\right ) \int \frac {e^{e^x}}{x^2} \, dx-\left (6 \log \left (2 \left (e^x+x\right )\right )\right ) \int \frac {e^{e^x+x}}{x} \, dx\\ &=x-2 \int \frac {e^{2 e^x} \log ^2\left (2 \left (e^x+x\right )\right )}{x^3} \, dx+2 \int \frac {e^{2 e^x+x} \log ^2\left (2 \left (e^x+x\right )\right )}{x^2} \, dx-2 \int \left (\int \frac {e^{2 e^x}}{x^2} \, dx\right ) \, dx+2 \int \left (-\frac {\int \frac {e^{2 e^x}}{x^2} \, dx}{e^x+x}+\frac {x \int \frac {e^{2 e^x}}{x^2} \, dx}{e^x+x}\right ) \, dx-2 \int \left (\int \frac {e^{2 e^x}}{x^2 \left (e^x+x\right )} \, dx\right ) \, dx+2 \int \left (-\frac {\int \frac {e^{2 e^x}}{x^2 \left (e^x+x\right )} \, dx}{e^x+x}+\frac {x \int \frac {e^{2 e^x}}{x^2 \left (e^x+x\right )} \, dx}{e^x+x}\right ) \, dx+2 \int \left (\int \frac {e^{2 e^x}}{x \left (e^x+x\right )} \, dx\right ) \, dx-2 \int \left (-\frac {\int \frac {e^{2 e^x}}{x \left (e^x+x\right )} \, dx}{e^x+x}+\frac {x \int \frac {e^{2 e^x}}{x \left (e^x+x\right )} \, dx}{e^x+x}\right ) \, dx-6 \int \frac {e^{e^x}}{x} \, dx+6 \int \frac {e^{e^x}}{e^x+x} \, dx-6 \int \frac {e^{e^x}}{x \left (e^x+x\right )} \, dx-6 \int \left (\int \frac {e^{e^x}}{x^2} \, dx\right ) \, dx+6 \int \left (-\frac {\int \frac {e^{e^x}}{x^2} \, dx}{e^x+x}+\frac {x \int \frac {e^{e^x}}{x^2} \, dx}{e^x+x}\right ) \, dx+6 \int \left (\int \frac {e^{e^x+x}}{x} \, dx\right ) \, dx+6 \int \frac {\int \frac {e^{e^x+x}}{x} \, dx}{e^x+x} \, dx-6 \int \frac {x \int \frac {e^{e^x+x}}{x} \, dx}{e^x+x} \, dx+\left (2 \log \left (2 \left (e^x+x\right )\right )\right ) \int \frac {e^{2 e^x}}{x^2} \, dx+\left (2 \log \left (2 \left (e^x+x\right )\right )\right ) \int \frac {e^{2 e^x}}{x^2 \left (e^x+x\right )} \, dx-\left (2 \log \left (2 \left (e^x+x\right )\right )\right ) \int \frac {e^{2 e^x}}{x \left (e^x+x\right )} \, dx+\left (6 \log \left (2 \left (e^x+x\right )\right )\right ) \int \frac {e^{e^x}}{x^2} \, dx-\left (6 \log \left (2 \left (e^x+x\right )\right )\right ) \int \frac {e^{e^x+x}}{x} \, dx\\ &=x-2 \int \frac {e^{2 e^x} \log ^2\left (2 \left (e^x+x\right )\right )}{x^3} \, dx+2 \int \frac {e^{2 e^x+x} \log ^2\left (2 \left (e^x+x\right )\right )}{x^2} \, dx-2 \int \left (\int \frac {e^{2 e^x}}{x^2} \, dx\right ) \, dx-2 \int \frac {\int \frac {e^{2 e^x}}{x^2} \, dx}{e^x+x} \, dx+2 \int \frac {x \int \frac {e^{2 e^x}}{x^2} \, dx}{e^x+x} \, dx-2 \int \left (\int \frac {e^{2 e^x}}{x^2 \left (e^x+x\right )} \, dx\right ) \, dx-2 \int \frac {\int \frac {e^{2 e^x}}{x^2 \left (e^x+x\right )} \, dx}{e^x+x} \, dx+2 \int \frac {x \int \frac {e^{2 e^x}}{x^2 \left (e^x+x\right )} \, dx}{e^x+x} \, dx+2 \int \left (\int \frac {e^{2 e^x}}{x \left (e^x+x\right )} \, dx\right ) \, dx+2 \int \frac {\int \frac {e^{2 e^x}}{x \left (e^x+x\right )} \, dx}{e^x+x} \, dx-2 \int \frac {x \int \frac {e^{2 e^x}}{x \left (e^x+x\right )} \, dx}{e^x+x} \, dx-6 \int \frac {e^{e^x}}{x} \, dx+6 \int \frac {e^{e^x}}{e^x+x} \, dx-6 \int \frac {e^{e^x}}{x \left (e^x+x\right )} \, dx-6 \int \left (\int \frac {e^{e^x}}{x^2} \, dx\right ) \, dx-6 \int \frac {\int \frac {e^{e^x}}{x^2} \, dx}{e^x+x} \, dx+6 \int \frac {x \int \frac {e^{e^x}}{x^2} \, dx}{e^x+x} \, dx+6 \int \left (\int \frac {e^{e^x+x}}{x} \, dx\right ) \, dx+6 \int \frac {\int \frac {e^{e^x+x}}{x} \, dx}{e^x+x} \, dx-6 \int \frac {x \int \frac {e^{e^x+x}}{x} \, dx}{e^x+x} \, dx+\left (2 \log \left (2 \left (e^x+x\right )\right )\right ) \int \frac {e^{2 e^x}}{x^2} \, dx+\left (2 \log \left (2 \left (e^x+x\right )\right )\right ) \int \frac {e^{2 e^x}}{x^2 \left (e^x+x\right )} \, dx-\left (2 \log \left (2 \left (e^x+x\right )\right )\right ) \int \frac {e^{2 e^x}}{x \left (e^x+x\right )} \, dx+\left (6 \log \left (2 \left (e^x+x\right )\right )\right ) \int \frac {e^{e^x}}{x^2} \, dx-\left (6 \log \left (2 \left (e^x+x\right )\right )\right ) \int \frac {e^{e^x+x}}{x} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.18, size = 41, normalized size = 1.71 \begin {gather*} x-\frac {6 e^{e^x} \log \left (2 \left (e^x+x\right )\right )}{x}+\frac {e^{2 e^x} \log ^2\left (2 \left (e^x+x\right )\right )}{x^2} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.72, size = 40, normalized size = 1.67 \begin {gather*} \frac {x^{3} - 6 \, x e^{\left (e^{x}\right )} \log \left (2 \, x + 2 \, e^{x}\right ) + e^{\left (2 \, e^{x}\right )} \log \left (2 \, x + 2 \, e^{x}\right )^{2}}{x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.20, size = 64, normalized size = 2.67 \begin {gather*} \frac {x^{3} - 6 \, x e^{\left (e^{x}\right )} \log \relax (2) + e^{\left (2 \, e^{x}\right )} \log \relax (2)^{2} - 6 \, x e^{\left (e^{x}\right )} \log \left (x + e^{x}\right ) + 2 \, e^{\left (2 \, e^{x}\right )} \log \relax (2) \log \left (x + e^{x}\right ) + e^{\left (2 \, e^{x}\right )} \log \left (x + e^{x}\right )^{2}}{x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.04, size = 40, normalized size = 1.67
method | result | size |
risch | \(\frac {{\mathrm e}^{2 \,{\mathrm e}^{x}} \ln \left (2 \,{\mathrm e}^{x}+2 x \right )^{2}}{x^{2}}-\frac {6 \ln \left (2 \,{\mathrm e}^{x}+2 x \right ) {\mathrm e}^{{\mathrm e}^{x}}}{x}+x\) | \(40\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.50, size = 62, normalized size = 2.58 \begin {gather*} \frac {x^{3} - 6 \, x e^{\left (e^{x}\right )} \log \relax (2) + e^{\left (2 \, e^{x}\right )} \log \relax (2)^{2} + e^{\left (2 \, e^{x}\right )} \log \left (x + e^{x}\right )^{2} - 2 \, {\left (3 \, x e^{\left (e^{x}\right )} - e^{\left (2 \, e^{x}\right )} \log \relax (2)\right )} \log \left (x + e^{x}\right )}{x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 2.73, size = 39, normalized size = 1.62 \begin {gather*} x+\frac {{\mathrm {e}}^{2\,{\mathrm {e}}^x}\,{\ln \left (2\,x+2\,{\mathrm {e}}^x\right )}^2}{x^2}-\frac {6\,{\mathrm {e}}^{{\mathrm {e}}^x}\,\ln \left (2\,x+2\,{\mathrm {e}}^x\right )}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [F(-1)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________