Optimal. Leaf size=24 \[ \frac {2+4 \left (2-x^2\right )+x^2 \log (x)}{6 x} \]
________________________________________________________________________________________
Rubi [A] time = 0.01, antiderivative size = 20, normalized size of antiderivative = 0.83, number of steps used = 6, number of rules used = 3, integrand size = 20, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.150, Rules used = {12, 14, 2295} \begin {gather*} -\frac {2 x}{3}+\frac {5}{3 x}+\frac {1}{6} x \log (x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 14
Rule 2295
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{6} \int \frac {-10-3 x^2+x^2 \log (x)}{x^2} \, dx\\ &=\frac {1}{6} \int \left (\frac {-10-3 x^2}{x^2}+\log (x)\right ) \, dx\\ &=\frac {1}{6} \int \frac {-10-3 x^2}{x^2} \, dx+\frac {1}{6} \int \log (x) \, dx\\ &=-\frac {x}{6}+\frac {1}{6} x \log (x)+\frac {1}{6} \int \left (-3-\frac {10}{x^2}\right ) \, dx\\ &=\frac {5}{3 x}-\frac {2 x}{3}+\frac {1}{6} x \log (x)\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.00, size = 20, normalized size = 0.83 \begin {gather*} \frac {5}{3 x}-\frac {2 x}{3}+\frac {1}{6} x \log (x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.74, size = 18, normalized size = 0.75 \begin {gather*} \frac {x^{2} \log \relax (x) - 4 \, x^{2} + 10}{6 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.13, size = 14, normalized size = 0.58 \begin {gather*} \frac {1}{6} \, x \log \relax (x) - \frac {2}{3} \, x + \frac {5}{3 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.01, size = 15, normalized size = 0.62
method | result | size |
default | \(\frac {x \ln \relax (x )}{6}-\frac {2 x}{3}+\frac {5}{3 x}\) | \(15\) |
norman | \(\frac {\frac {5}{3}-\frac {2 x^{2}}{3}+\frac {x^{2} \ln \relax (x )}{6}}{x}\) | \(19\) |
risch | \(\frac {x \ln \relax (x )}{6}-\frac {2 x^{2}-5}{3 x}\) | \(19\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.41, size = 14, normalized size = 0.58 \begin {gather*} \frac {1}{6} \, x \log \relax (x) - \frac {2}{3} \, x + \frac {5}{3 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 2.60, size = 14, normalized size = 0.58 \begin {gather*} x\,\left (\frac {\ln \relax (x)}{6}-\frac {2}{3}\right )+\frac {5}{3\,x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.10, size = 15, normalized size = 0.62 \begin {gather*} \frac {x \log {\relax (x )}}{6} - \frac {2 x}{3} + \frac {5}{3 x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________