Optimal. Leaf size=30 \[ \frac {2 e \left (e^{\frac {1}{2} \left (28+e^4\right )}-x\right )}{\left (e^4-x\right ) x} \]
________________________________________________________________________________________
Rubi [A] time = 0.09, antiderivative size = 44, normalized size of antiderivative = 1.47, number of steps used = 4, number of rules used = 3, integrand size = 51, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.059, Rules used = {1594, 27, 1820} \begin {gather*} \frac {2 e^{11+\frac {e^4}{2}}}{x}-\frac {2 e \left (1-e^{10+\frac {e^4}{2}}\right )}{e^4-x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 27
Rule 1594
Rule 1820
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-2 e x^2+e^{\frac {1}{2} \left (28+e^4\right )} \left (-2 e^5+4 e x\right )}{x^2 \left (e^8-2 e^4 x+x^2\right )} \, dx\\ &=\int \frac {-2 e x^2+e^{\frac {1}{2} \left (28+e^4\right )} \left (-2 e^5+4 e x\right )}{x^2 \left (-e^4+x\right )^2} \, dx\\ &=\int \left (\frac {2 e \left (-1+e^{10+\frac {e^4}{2}}\right )}{\left (e^4-x\right )^2}-\frac {2 e^{11+\frac {e^4}{2}}}{x^2}\right ) \, dx\\ &=-\frac {2 e \left (1-e^{10+\frac {e^4}{2}}\right )}{e^4-x}+\frac {2 e^{11+\frac {e^4}{2}}}{x}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.02, size = 30, normalized size = 1.00 \begin {gather*} -\frac {2 e \left (-e^{14+\frac {e^4}{2}}+x\right )}{\left (e^4-x\right ) x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.75, size = 27, normalized size = 0.90 \begin {gather*} \frac {2 \, {\left (x e - e^{\left (\frac {1}{2} \, e^{4} + 15\right )}\right )}}{x^{2} - x e^{4}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F(-2)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: NotImplementedError} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.11, size = 27, normalized size = 0.90
method | result | size |
gosper | \(\frac {2 \left ({\mathrm e}^{\frac {{\mathrm e}^{4}}{2}+14}-x \right ) {\mathrm e}}{x \left ({\mathrm e}^{4}-x \right )}\) | \(27\) |
risch | \(\frac {-2 x \,{\mathrm e}+2 \,{\mathrm e}^{15+\frac {{\mathrm e}^{4}}{2}}}{\left ({\mathrm e}^{4}-x \right ) x}\) | \(28\) |
norman | \(\frac {-2 x \,{\mathrm e}+2 \,{\mathrm e} \,{\mathrm e}^{\frac {{\mathrm e}^{4}}{2}} {\mathrm e}^{14}}{x \left ({\mathrm e}^{4}-x \right )}\) | \(30\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.46, size = 27, normalized size = 0.90 \begin {gather*} \frac {2 \, {\left (x e - e^{\left (\frac {1}{2} \, e^{4} + 15\right )}\right )}}{x^{2} - x e^{4}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.20, size = 28, normalized size = 0.93 \begin {gather*} \frac {2\,{\mathrm {e}}^{\frac {{\mathrm {e}}^4}{2}+15}-2\,x\,\mathrm {e}}{x\,{\mathrm {e}}^4-x^2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.43, size = 27, normalized size = 0.90 \begin {gather*} - \frac {- 2 e x + 2 e^{15} e^{\frac {e^{4}}{2}}}{x^{2} - x e^{4}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________