Optimal. Leaf size=20 \[ \left (e^{x-4 x^2}+x+2 \left (3+x^2\right )\right )^2 \]
________________________________________________________________________________________
Rubi [B] time = 0.31, antiderivative size = 67, normalized size of antiderivative = 3.35, number of steps used = 26, number of rules used = 7, integrand size = 57, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.123, Rules used = {2244, 2236, 6742, 2234, 2205, 2240, 2241} \begin {gather*} 4 x^4+4 x^3+4 e^{x-4 x^2} x^2+25 x^2+2 e^{x-4 x^2} x+e^{2 x-8 x^2}+12 e^{x-4 x^2}+12 x \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 2205
Rule 2234
Rule 2236
Rule 2240
Rule 2241
Rule 2244
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=12 x+25 x^2+4 x^3+4 x^4+\int e^{2 \left (x-4 x^2\right )} (2-16 x) \, dx+\int e^{x-4 x^2} \left (14-86 x-12 x^2-32 x^3\right ) \, dx\\ &=12 x+25 x^2+4 x^3+4 x^4+\int e^{2 x-8 x^2} (2-16 x) \, dx+\int \left (14 e^{x-4 x^2}-86 e^{x-4 x^2} x-12 e^{x-4 x^2} x^2-32 e^{x-4 x^2} x^3\right ) \, dx\\ &=e^{2 x-8 x^2}+12 x+25 x^2+4 x^3+4 x^4-12 \int e^{x-4 x^2} x^2 \, dx+14 \int e^{x-4 x^2} \, dx-32 \int e^{x-4 x^2} x^3 \, dx-86 \int e^{x-4 x^2} x \, dx\\ &=e^{2 x-8 x^2}+\frac {43}{4} e^{x-4 x^2}+12 x+\frac {3}{2} e^{x-4 x^2} x+25 x^2+4 e^{x-4 x^2} x^2+4 x^3+4 x^4-\frac {3}{2} \int e^{x-4 x^2} \, dx-\frac {3}{2} \int e^{x-4 x^2} x \, dx-4 \int e^{x-4 x^2} x^2 \, dx-8 \int e^{x-4 x^2} x \, dx-\frac {43}{4} \int e^{x-4 x^2} \, dx+\left (14 \sqrt [16]{e}\right ) \int e^{-\frac {1}{16} (1-8 x)^2} \, dx\\ &=e^{2 x-8 x^2}+\frac {191}{16} e^{x-4 x^2}+12 x+2 e^{x-4 x^2} x+25 x^2+4 e^{x-4 x^2} x^2+4 x^3+4 x^4-\frac {7}{2} \sqrt [16]{e} \sqrt {\pi } \text {erf}\left (\frac {1}{4} (1-8 x)\right )-\frac {3}{16} \int e^{x-4 x^2} \, dx-\frac {1}{2} \int e^{x-4 x^2} \, dx-\frac {1}{2} \int e^{x-4 x^2} x \, dx-\frac {1}{2} \left (3 \sqrt [16]{e}\right ) \int e^{-\frac {1}{16} (1-8 x)^2} \, dx-\frac {1}{4} \left (43 \sqrt [16]{e}\right ) \int e^{-\frac {1}{16} (1-8 x)^2} \, dx-\int e^{x-4 x^2} \, dx\\ &=e^{2 x-8 x^2}+12 e^{x-4 x^2}+12 x+2 e^{x-4 x^2} x+25 x^2+4 e^{x-4 x^2} x^2+4 x^3+4 x^4-\frac {7}{16} \sqrt [16]{e} \sqrt {\pi } \text {erf}\left (\frac {1}{4} (1-8 x)\right )-\frac {1}{16} \int e^{x-4 x^2} \, dx-\frac {1}{16} \left (3 \sqrt [16]{e}\right ) \int e^{-\frac {1}{16} (1-8 x)^2} \, dx-\frac {1}{2} \sqrt [16]{e} \int e^{-\frac {1}{16} (1-8 x)^2} \, dx-\sqrt [16]{e} \int e^{-\frac {1}{16} (1-8 x)^2} \, dx\\ &=e^{2 x-8 x^2}+12 e^{x-4 x^2}+12 x+2 e^{x-4 x^2} x+25 x^2+4 e^{x-4 x^2} x^2+4 x^3+4 x^4-\frac {1}{64} \sqrt [16]{e} \sqrt {\pi } \text {erf}\left (\frac {1}{4} (1-8 x)\right )-\frac {1}{16} \sqrt [16]{e} \int e^{-\frac {1}{16} (1-8 x)^2} \, dx\\ &=e^{2 x-8 x^2}+12 e^{x-4 x^2}+12 x+2 e^{x-4 x^2} x+25 x^2+4 e^{x-4 x^2} x^2+4 x^3+4 x^4\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [B] time = 0.16, size = 51, normalized size = 2.55 \begin {gather*} e^{2 x-8 x^2}+12 x+25 x^2+4 x^3+4 x^4-2 e^{x-4 x^2} \left (-6-x-2 x^2\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.83, size = 47, normalized size = 2.35 \begin {gather*} 4 \, x^{4} + 4 \, x^{3} + 25 \, x^{2} + 2 \, {\left (2 \, x^{2} + x + 6\right )} e^{\left (-4 \, x^{2} + x\right )} + 12 \, x + e^{\left (-8 \, x^{2} + 2 \, x\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.41, size = 51, normalized size = 2.55 \begin {gather*} 4 \, x^{4} + 4 \, x^{3} + 25 \, x^{2} + \frac {1}{16} \, {\left ({\left (8 \, x - 1\right )}^{2} + 48 \, x + 191\right )} e^{\left (-4 \, x^{2} + x\right )} + 12 \, x + e^{\left (-8 \, x^{2} + 2 \, x\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [B] time = 0.06, size = 49, normalized size = 2.45
method | result | size |
risch | \({\mathrm e}^{-2 x \left (4 x -1\right )}+\left (4 x^{2}+2 x +12\right ) {\mathrm e}^{-x \left (4 x -1\right )}+4 x^{4}+4 x^{3}+25 x^{2}+12 x\) | \(49\) |
default | \(12 x +{\mathrm e}^{-8 x^{2}+2 x}+12 \,{\mathrm e}^{-4 x^{2}+x}+2 x \,{\mathrm e}^{-4 x^{2}+x}+4 x^{2} {\mathrm e}^{-4 x^{2}+x}+25 x^{2}+4 x^{3}+4 x^{4}\) | \(64\) |
norman | \(12 x +{\mathrm e}^{-8 x^{2}+2 x}+12 \,{\mathrm e}^{-4 x^{2}+x}+2 x \,{\mathrm e}^{-4 x^{2}+x}+4 x^{2} {\mathrm e}^{-4 x^{2}+x}+25 x^{2}+4 x^{3}+4 x^{4}\) | \(78\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.38, size = 47, normalized size = 2.35 \begin {gather*} 4 \, x^{4} + 4 \, x^{3} + 25 \, x^{2} + 2 \, {\left (2 \, x^{2} + x + 6\right )} e^{\left (-4 \, x^{2} + x\right )} + 12 \, x + e^{\left (-8 \, x^{2} + 2 \, x\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.11, size = 63, normalized size = 3.15 \begin {gather*} 12\,x+12\,{\mathrm {e}}^{x-4\,x^2}+{\mathrm {e}}^{2\,x-8\,x^2}+2\,x\,{\mathrm {e}}^{x-4\,x^2}+4\,x^2\,{\mathrm {e}}^{x-4\,x^2}+25\,x^2+4\,x^3+4\,x^4 \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.12, size = 46, normalized size = 2.30 \begin {gather*} 4 x^{4} + 4 x^{3} + 25 x^{2} + 12 x + \left (4 x^{2} + 2 x + 12\right ) e^{- 4 x^{2} + x} + e^{- 8 x^{2} + 2 x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________