Optimal. Leaf size=23 \[ \frac {1}{5} e^{-2 x} \left (3-\frac {2}{x}+x\right ) (5+\log (3 x)) \]
________________________________________________________________________________________
Rubi [B] time = 0.66, antiderivative size = 68, normalized size of antiderivative = 2.96, number of steps used = 18, number of rules used = 8, integrand size = 47, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.170, Rules used = {12, 6742, 2199, 2194, 2177, 2178, 2176, 2554} \begin {gather*} e^{-2 x} x+3 e^{-2 x}-\frac {2 e^{-2 x}}{x}+\frac {1}{5} e^{-2 x} x \log (3 x)+\frac {3}{5} e^{-2 x} \log (3 x)-\frac {2 e^{-2 x} \log (3 x)}{5 x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 2176
Rule 2177
Rule 2178
Rule 2194
Rule 2199
Rule 2554
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{5} \int \frac {e^{-2 x} \left (8+23 x-24 x^2-10 x^3+\left (2+4 x-5 x^2-2 x^3\right ) \log (3 x)\right )}{x^2} \, dx\\ &=\frac {1}{5} \int \left (\frac {e^{-2 x} \left (8+23 x-24 x^2-10 x^3\right )}{x^2}-\frac {e^{-2 x} \left (-2-4 x+5 x^2+2 x^3\right ) \log (3 x)}{x^2}\right ) \, dx\\ &=\frac {1}{5} \int \frac {e^{-2 x} \left (8+23 x-24 x^2-10 x^3\right )}{x^2} \, dx-\frac {1}{5} \int \frac {e^{-2 x} \left (-2-4 x+5 x^2+2 x^3\right ) \log (3 x)}{x^2} \, dx\\ &=\frac {3}{5} e^{-2 x} \log (3 x)-\frac {2 e^{-2 x} \log (3 x)}{5 x}+\frac {1}{5} e^{-2 x} x \log (3 x)+\frac {1}{5} \int \left (-24 e^{-2 x}+\frac {8 e^{-2 x}}{x^2}+\frac {23 e^{-2 x}}{x}-10 e^{-2 x} x\right ) \, dx+\frac {1}{5} \int \frac {e^{-2 x} \left (2-3 x-x^2\right )}{x^2} \, dx\\ &=\frac {3}{5} e^{-2 x} \log (3 x)-\frac {2 e^{-2 x} \log (3 x)}{5 x}+\frac {1}{5} e^{-2 x} x \log (3 x)+\frac {1}{5} \int \left (-e^{-2 x}+\frac {2 e^{-2 x}}{x^2}-\frac {3 e^{-2 x}}{x}\right ) \, dx+\frac {8}{5} \int \frac {e^{-2 x}}{x^2} \, dx-2 \int e^{-2 x} x \, dx+\frac {23}{5} \int \frac {e^{-2 x}}{x} \, dx-\frac {24}{5} \int e^{-2 x} \, dx\\ &=\frac {12 e^{-2 x}}{5}-\frac {8 e^{-2 x}}{5 x}+e^{-2 x} x+\frac {23 \text {Ei}(-2 x)}{5}+\frac {3}{5} e^{-2 x} \log (3 x)-\frac {2 e^{-2 x} \log (3 x)}{5 x}+\frac {1}{5} e^{-2 x} x \log (3 x)-\frac {1}{5} \int e^{-2 x} \, dx+\frac {2}{5} \int \frac {e^{-2 x}}{x^2} \, dx-\frac {3}{5} \int \frac {e^{-2 x}}{x} \, dx-\frac {16}{5} \int \frac {e^{-2 x}}{x} \, dx-\int e^{-2 x} \, dx\\ &=3 e^{-2 x}-\frac {2 e^{-2 x}}{x}+e^{-2 x} x+\frac {4 \text {Ei}(-2 x)}{5}+\frac {3}{5} e^{-2 x} \log (3 x)-\frac {2 e^{-2 x} \log (3 x)}{5 x}+\frac {1}{5} e^{-2 x} x \log (3 x)-\frac {4}{5} \int \frac {e^{-2 x}}{x} \, dx\\ &=3 e^{-2 x}-\frac {2 e^{-2 x}}{x}+e^{-2 x} x+\frac {3}{5} e^{-2 x} \log (3 x)-\frac {2 e^{-2 x} \log (3 x)}{5 x}+\frac {1}{5} e^{-2 x} x \log (3 x)\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.19, size = 26, normalized size = 1.13 \begin {gather*} \frac {e^{-2 x} \left (-2+3 x+x^2\right ) (5+\log (3 x))}{5 x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.69, size = 37, normalized size = 1.61 \begin {gather*} \frac {{\left (x^{2} + 3 \, x - 2\right )} e^{\left (-2 \, x\right )} \log \left (3 \, x\right ) + 5 \, {\left (x^{2} + 3 \, x - 2\right )} e^{\left (-2 \, x\right )}}{5 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.31, size = 61, normalized size = 2.65 \begin {gather*} \frac {x^{2} e^{\left (-2 \, x\right )} \log \left (3 \, x\right ) + 5 \, x^{2} e^{\left (-2 \, x\right )} + 3 \, x e^{\left (-2 \, x\right )} \log \left (3 \, x\right ) + 15 \, x e^{\left (-2 \, x\right )} - 2 \, e^{\left (-2 \, x\right )} \log \left (3 \, x\right ) - 10 \, e^{\left (-2 \, x\right )}}{5 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.06, size = 39, normalized size = 1.70
method | result | size |
risch | \(\frac {\left (x^{2}+3 x -2\right ) {\mathrm e}^{-2 x} \ln \left (3 x \right )}{5 x}+\frac {\left (x^{2}+3 x -2\right ) {\mathrm e}^{-2 x}}{x}\) | \(39\) |
norman | \(\frac {\left (-2+x^{2}+3 x +\frac {3 x \ln \left (3 x \right )}{5}+\frac {x^{2} \ln \left (3 x \right )}{5}-\frac {2 \ln \left (3 x \right )}{5}\right ) {\mathrm e}^{-2 x}}{x}\) | \(41\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \frac {1}{2} \, {\left (2 \, x + 1\right )} e^{\left (-2 \, x\right )} + \frac {1}{2} \, e^{\left (-2 \, x\right )} \log \left (3 \, x\right ) + \frac {{\left (2 \, x^{2} + x - 4\right )} e^{\left (-2 \, x\right )} \log \relax (x)}{10 \, x} + \frac {41}{10} \, {\rm Ei}\left (-2 \, x\right ) + \frac {12}{5} \, e^{\left (-2 \, x\right )} - \frac {16}{5} \, \Gamma \left (-1, 2 \, x\right ) - \frac {1}{10} \, \int \frac {{\left (4 \, x^{3} \log \relax (3) + 2 \, x^{2} - x {\left (8 \, \log \relax (3) - 1\right )} - 4 \, \log \relax (3) - 4\right )} e^{\left (-2 \, x\right )}}{x^{2}}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.55, size = 23, normalized size = 1.00 \begin {gather*} \frac {{\mathrm {e}}^{-2\,x}\,\left (\ln \left (3\,x\right )+5\right )\,\left (x^2+3\,x-2\right )}{5\,x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.32, size = 41, normalized size = 1.78 \begin {gather*} \frac {\left (x^{2} \log {\left (3 x \right )} + 5 x^{2} + 3 x \log {\left (3 x \right )} + 15 x - 2 \log {\left (3 x \right )} - 10\right ) e^{- 2 x}}{5 x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________