Optimal. Leaf size=16 \[ \frac {25}{\left (x^3+\log (x)\right ) \log ^2(4+x)} \]
________________________________________________________________________________________
Rubi [F] time = 1.42, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-50 x^4-50 x \log (x)+\left (-100-25 x-300 x^3-75 x^4\right ) \log (4+x)}{\left (4 x^7+x^8+\left (8 x^4+2 x^5\right ) \log (x)+\left (4 x+x^2\right ) \log ^2(x)\right ) \log ^3(4+x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {25 \left (-2 x^4-2 x \log (x)-\left (4+x+12 x^3+3 x^4\right ) \log (4+x)\right )}{x (4+x) \left (x^3+\log (x)\right )^2 \log ^3(4+x)} \, dx\\ &=25 \int \frac {-2 x^4-2 x \log (x)-\left (4+x+12 x^3+3 x^4\right ) \log (4+x)}{x (4+x) \left (x^3+\log (x)\right )^2 \log ^3(4+x)} \, dx\\ &=25 \int \left (-\frac {2}{(4+x) \left (x^3+\log (x)\right ) \log ^3(4+x)}+\frac {-1-3 x^3}{x \left (x^3+\log (x)\right )^2 \log ^2(4+x)}\right ) \, dx\\ &=25 \int \frac {-1-3 x^3}{x \left (x^3+\log (x)\right )^2 \log ^2(4+x)} \, dx-50 \int \frac {1}{(4+x) \left (x^3+\log (x)\right ) \log ^3(4+x)} \, dx\\ &=25 \int \left (-\frac {1}{x \left (x^3+\log (x)\right )^2 \log ^2(4+x)}-\frac {3 x^2}{\left (x^3+\log (x)\right )^2 \log ^2(4+x)}\right ) \, dx-50 \int \frac {1}{(4+x) \left (x^3+\log (x)\right ) \log ^3(4+x)} \, dx\\ &=-\left (25 \int \frac {1}{x \left (x^3+\log (x)\right )^2 \log ^2(4+x)} \, dx\right )-50 \int \frac {1}{(4+x) \left (x^3+\log (x)\right ) \log ^3(4+x)} \, dx-75 \int \frac {x^2}{\left (x^3+\log (x)\right )^2 \log ^2(4+x)} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.38, size = 16, normalized size = 1.00 \begin {gather*} \frac {25}{\left (x^3+\log (x)\right ) \log ^2(4+x)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.58, size = 16, normalized size = 1.00 \begin {gather*} \frac {25}{{\left (x^{3} + \log \relax (x)\right )} \log \left (x + 4\right )^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.14, size = 24, normalized size = 1.50 \begin {gather*} \frac {25}{x^{3} \log \left (x + 4\right )^{2} + \log \left (x + 4\right )^{2} \log \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.04, size = 17, normalized size = 1.06
method | result | size |
risch | \(\frac {25}{\ln \left (4+x \right )^{2} \left (\ln \relax (x )+x^{3}\right )}\) | \(17\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.43, size = 16, normalized size = 1.00 \begin {gather*} \frac {25}{{\left (x^{3} + \log \relax (x)\right )} \log \left (x + 4\right )^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.22, size = 956, normalized size = 59.75 \begin {gather*} \frac {\frac {25\,\left (27\,x^{11}+336\,x^{10}+960\,x^9+108\,x^8+1012\,x^7+2336\,x^6+54\,x^5+456\,x^4+960\,x^3+6\,x^2+48\,x+96\right )}{6\,x^2\,\left (3\,x^3+1\right )}+\frac {25\,{\ln \relax (x)}^2\,\left (27\,x^5+120\,x^4+96\,x^3+4\,x+32\right )}{6\,x^2\,\left (3\,x^3+1\right )}-\frac {25\,\ln \relax (x)\,\left (54\,x^8+420\,x^7+768\,x^6+27\,x^5+140\,x^4+112\,x^3-12\,x-48\right )}{3\,x^2\,\left (3\,x^3+1\right )}}{x^9+3\,x^6\,\ln \relax (x)+3\,x^3\,{\ln \relax (x)}^2+{\ln \relax (x)}^3}-\frac {\frac {25\,\ln \relax (x)\,\left (486\,x^{11}+2520\,x^{10}+2304\,x^9+243\,x^8+1320\,x^7+2112\,x^6+54\,x^5+292\,x^4+640\,x^3+8\,x+64\right )}{6\,x^2\,{\left (3\,x^3+1\right )}^3}-\frac {25\,\left (486\,x^{14}+5040\,x^{13}+11520\,x^{12}+891\,x^{11}+6240\,x^{10}+9120\,x^9+378\,x^8+2012\,x^7+1376\,x^6+54\,x^5+128\,x^4-416\,x^3-24\,x-96\right )}{12\,x^2\,{\left (3\,x^3+1\right )}^3}+\frac {25\,{\ln \relax (x)}^2\,\left (360\,x^7+576\,x^6-81\,x^5-192\,x^4+384\,x^3+4\,x+64\right )}{12\,x^2\,{\left (3\,x^3+1\right )}^3}}{x^6+2\,x^3\,\ln \relax (x)+{\ln \relax (x)}^2}-\frac {\frac {1750\,x^{13}}{27}+\frac {3200\,x^{12}}{27}-\frac {75\,x^{11}}{4}-\frac {1250\,x^{10}}{27}+\frac {3200\,x^9}{27}-\frac {25\,x^8}{12}-\frac {175\,x^7}{81}+\frac {400\,x^6}{9}-\frac {25\,x^5}{36}-\frac {1025\,x^4}{729}+\frac {5600\,x^3}{729}+\frac {25\,x}{729}+\frac {400}{729}}{x^{17}+\frac {5\,x^{14}}{3}+\frac {10\,x^{11}}{9}+\frac {10\,x^8}{27}+\frac {5\,x^5}{81}+\frac {x^2}{243}}+\frac {\frac {25}{\ln \relax (x)+x^3}+\frac {25\,\ln \left (x+4\right )\,\left (3\,x^3+1\right )\,\left (x+4\right )}{2\,x\,{\left (\ln \relax (x)+x^3\right )}^2}}{{\ln \left (x+4\right )}^2}+\frac {\frac {25\,\left (4374\,x^{17}+30240\,x^{16}+34560\,x^{15}+2916\,x^{14}+21600\,x^{13}+46656\,x^{12}+2187\,x^{11}+12816\,x^{10}+25920\,x^9+486\,x^8+2980\,x^7+7424\,x^6+54\,x^5+344\,x^4+1088\,x^3+8\,x+64\right )}{12\,x^2\,{\left (3\,x^3+1\right )}^5}+\frac {25\,{\ln \relax (x)}^2\,\left (4320\,x^{10}+8640\,x^9-1458\,x^8-5832\,x^7+6912\,x^6+243\,x^5+504\,x^4+1728\,x^3+4\,x+128\right )}{12\,x^2\,{\left (3\,x^3+1\right )}^5}+\frac {25\,\ln \relax (x)\,\left (7560\,x^{13}+13824\,x^{12}-2187\,x^{11}-5400\,x^{10}+13824\,x^9-243\,x^8-252\,x^7+5184\,x^6-81\,x^5-164\,x^4+896\,x^3+4\,x+64\right )}{6\,x^2\,{\left (3\,x^3+1\right )}^5}}{\ln \relax (x)+x^3}-\frac {\frac {25\,\left (3\,x^3+1\right )\,\left (x+4\right )}{2\,x\,{\left (\ln \relax (x)+x^3\right )}^2}+\frac {25\,\ln \left (x+4\right )\,\left (x+4\right )\,\left (2\,x+4\,\ln \relax (x)-24\,x^3\,\ln \relax (x)-9\,x^4\,\ln \relax (x)+52\,x^3+12\,x^4+48\,x^6+9\,x^7+8\right )}{2\,x^2\,{\left (\ln \relax (x)+x^3\right )}^3}}{\ln \left (x+4\right )}-\frac {\ln \relax (x)\,\left (\frac {1000\,x^{10}}{27}+\frac {2000\,x^9}{27}-\frac {25\,x^8}{2}-50\,x^7+\frac {1600\,x^6}{27}+\frac {25\,x^5}{12}+\frac {350\,x^4}{81}+\frac {400\,x^3}{27}+\frac {25\,x}{729}+\frac {800}{729}\right )}{x^{17}+\frac {5\,x^{14}}{3}+\frac {10\,x^{11}}{9}+\frac {10\,x^8}{27}+\frac {5\,x^5}{81}+\frac {x^2}{243}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.30, size = 14, normalized size = 0.88 \begin {gather*} \frac {25}{\left (x^{3} + \log {\relax (x )}\right ) \log {\left (x + 4 \right )}^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________