Optimal. Leaf size=21 \[ \log \left (\frac {x^2 (-2+\log (16))}{\left (-5+e^{e^{x^2}}+x\right )^2}\right ) \]
________________________________________________________________________________________
Rubi [F] time = 0.59, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-10+e^{e^{x^2}} \left (2-4 e^{x^2} x^2\right )}{-5 x+e^{e^{x^2}} x+x^2} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (\frac {2 \left (-5+e^{e^{x^2}}\right )}{x \left (-5+e^{e^{x^2}}+x\right )}-\frac {4 e^{e^{x^2}+x^2} x}{-5+e^{e^{x^2}}+x}\right ) \, dx\\ &=2 \int \frac {-5+e^{e^{x^2}}}{x \left (-5+e^{e^{x^2}}+x\right )} \, dx-4 \int \frac {e^{e^{x^2}+x^2} x}{-5+e^{e^{x^2}}+x} \, dx\\ &=2 \int \left (\frac {1}{x}-\frac {1}{-5+e^{e^{x^2}}+x}\right ) \, dx-4 \int \frac {e^{e^{x^2}+x^2} x}{-5+e^{e^{x^2}}+x} \, dx\\ &=2 \log (x)-2 \int \frac {1}{-5+e^{e^{x^2}}+x} \, dx-4 \int \frac {e^{e^{x^2}+x^2} x}{-5+e^{e^{x^2}}+x} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.17, size = 22, normalized size = 1.05 \begin {gather*} -2 \log \left (5-e^{e^{x^2}}-x\right )+2 \log (x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.67, size = 16, normalized size = 0.76 \begin {gather*} -2 \, \log \left (x + e^{\left (e^{\left (x^{2}\right )}\right )} - 5\right ) + 2 \, \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.14, size = 35, normalized size = 1.67 \begin {gather*} 2 \, x^{2} - 2 \, \log \left (x e^{\left (x^{2}\right )} + e^{\left (x^{2} + e^{\left (x^{2}\right )}\right )} - 5 \, e^{\left (x^{2}\right )}\right ) + 2 \, \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.04, size = 17, normalized size = 0.81
method | result | size |
norman | \(2 \ln \relax (x )-2 \ln \left ({\mathrm e}^{{\mathrm e}^{x^{2}}}+x -5\right )\) | \(17\) |
risch | \(2 \ln \relax (x )-2 \ln \left ({\mathrm e}^{{\mathrm e}^{x^{2}}}+x -5\right )\) | \(17\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.41, size = 16, normalized size = 0.76 \begin {gather*} -2 \, \log \left (x + e^{\left (e^{\left (x^{2}\right )}\right )} - 5\right ) + 2 \, \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 2.57, size = 16, normalized size = 0.76 \begin {gather*} 2\,\ln \relax (x)-2\,\ln \left (x+{\mathrm {e}}^{{\mathrm {e}}^{x^2}}-5\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.27, size = 17, normalized size = 0.81 \begin {gather*} 2 \log {\relax (x )} - 2 \log {\left (x + e^{e^{x^{2}}} - 5 \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________