Optimal. Leaf size=22 \[ \frac {e^{e^{(-2+\log (2))^2}}}{4+\frac {64 x^2}{49}} \]
________________________________________________________________________________________
Rubi [A] time = 0.01, antiderivative size = 27, normalized size of antiderivative = 1.23, number of steps used = 3, number of rules used = 3, integrand size = 35, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.086, Rules used = {12, 21, 261} \begin {gather*} \frac {49 e^{\frac {1}{16} e^{4+\log ^2(2)}}}{4 \left (16 x^2+49\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 21
Rule 261
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=-\left (\left (1568 e^{\frac {1}{16} e^{4+\log ^2(2)}}\right ) \int \frac {x}{\left (49+16 x^2\right ) \left (196+64 x^2\right )} \, dx\right )\\ &=-\left (\left (392 e^{\frac {1}{16} e^{4+\log ^2(2)}}\right ) \int \frac {x}{\left (49+16 x^2\right )^2} \, dx\right )\\ &=\frac {49 e^{\frac {1}{16} e^{4+\log ^2(2)}}}{4 \left (49+16 x^2\right )}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.01, size = 27, normalized size = 1.23 \begin {gather*} \frac {49 e^{\frac {1}{16} e^{4+\log ^2(2)}}}{4 \left (49+16 x^2\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.53, size = 23, normalized size = 1.05 \begin {gather*} \frac {49 \, e^{\left (e^{\left (\log \relax (2)^{2} - 4 \, \log \relax (2) + 4\right )}\right )}}{4 \, {\left (16 \, x^{2} + 49\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.20, size = 21, normalized size = 0.95 \begin {gather*} \frac {49 \, e^{\left (\frac {1}{16} \, e^{\left (\log \relax (2)^{2} + 4\right )}\right )}}{4 \, {\left (16 \, x^{2} + 49\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.07, size = 20, normalized size = 0.91
method | result | size |
risch | \(\frac {49 \,{\mathrm e}^{\frac {{\mathrm e}^{\ln \relax (2)^{2}+4}}{16}}}{64 \left (x^{2}+\frac {49}{16}\right )}\) | \(20\) |
default | \(\frac {49 \,{\mathrm e}^{\frac {{\mathrm e}^{\ln \relax (2)^{2}+4}}{16}}}{4 \left (16 x^{2}+49\right )}\) | \(22\) |
norman | \(\frac {49 \,{\mathrm e}^{\frac {{\mathrm e}^{\ln \relax (2)^{2}+4}}{16}}}{4 \left (16 x^{2}+49\right )}\) | \(23\) |
gosper | \({\mathrm e}^{-\ln \left (\frac {64 x^{2}}{49}+4\right )+{\mathrm e}^{\ln \relax (2)^{2}-4 \ln \relax (2)+4}}\) | \(24\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.37, size = 21, normalized size = 0.95 \begin {gather*} \frac {49 \, e^{\left (\frac {1}{16} \, e^{\left (\log \relax (2)^{2} + 4\right )}\right )}}{4 \, {\left (16 \, x^{2} + 49\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.09, size = 21, normalized size = 0.95 \begin {gather*} \frac {49\,{\mathrm {e}}^{\frac {{\mathrm {e}}^{{\ln \relax (2)}^2}\,{\mathrm {e}}^4}{16}}}{4\,\left (16\,x^2+49\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.10, size = 20, normalized size = 0.91 \begin {gather*} \frac {392 e^{\frac {e^{4} e^{\log {\relax (2 )}^{2}}}{16}}}{512 x^{2} + 1568} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________