3.41.10 2x2+(4x+2x2)(iπ+log(54))+(24x+x2)(iπ+log(54))2+(x3+(2x2+x3)(iπ+log(54))+(xx2)(iπ+log(54))2)log(x2+(x+x2)(iπ+log(54))iπx+log(54))x3+(2x2x3)(iπ+log(54))+(x+x2)(iπ+log(54))2+(2x3+(4x22x3)(iπ+log(54))+(2x+2x2)(iπ+log(54))2)log(x2+(x+x2)(iπ+log(54))iπx+log(54))+(x3+(2x2x3)(iπ+log(54))+(x+x2)(iπ+log(54))2)log2(x2+(x+x2)(iπ+log(54))iπx+log(54))dx

Optimal. Leaf size=38 2x1+log(x+x21xiπ+log(54))

________________________________________________________________________________________

Rubi [F]  time = 13.69, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, number of rulesintegrand size = 0.000, Rules used = {} 2x2+(4x+2x2)(iπ+log(54))+(24x+x2)(iπ+log(54))2+(x3+(2x2+x3)(iπ+log(54))+(xx2)(iπ+log(54))2)log(x2+(x+x2)(iπ+log(54))iπx+log(54))x3+(2x2x3)(iπ+log(54))+(x+x2)(iπ+log(54))2+(2x3+(4x22x3)(iπ+log(54))+(2x+2x2)(iπ+log(54))2)log(x2+(x+x2)(iπ+log(54))iπx+log(54))+(x3+(2x2x3)(iπ+log(54))+(x+x2)(iπ+log(54))2)log2(x2+(x+x2)(iπ+log(54))iπx+log(54))dx

Verification is not applicable to the result.

[In]

Int[(2*x^2 + (-4*x + 2*x^2)*(I*Pi + Log[5/4]) + (2 - 4*x + x^2)*(I*Pi + Log[5/4])^2 + (x^3 + (-2*x^2 + x^3)*(I
*Pi + Log[5/4]) + (x - x^2)*(I*Pi + Log[5/4])^2)*Log[(x^2 + (-x + x^2)*(I*Pi + Log[5/4]))/(I*Pi - x + Log[5/4]
)])/(-x^3 + (2*x^2 - x^3)*(I*Pi + Log[5/4]) + (-x + x^2)*(I*Pi + Log[5/4])^2 + (-2*x^3 + (4*x^2 - 2*x^3)*(I*Pi
 + Log[5/4]) + (-2*x + 2*x^2)*(I*Pi + Log[5/4])^2)*Log[(x^2 + (-x + x^2)*(I*Pi + Log[5/4]))/(I*Pi - x + Log[5/
4])] + (-x^3 + (2*x^2 - x^3)*(I*Pi + Log[5/4]) + (-x + x^2)*(I*Pi + Log[5/4])^2)*Log[(x^2 + (-x + x^2)*(I*Pi +
 Log[5/4]))/(I*Pi - x + Log[5/4])]^2),x]

[Out]

Defer[Int][(-1 - Log[(x*(x + (-1 + x)*(I*Pi + Log[5/4])))/(I*Pi - x + Log[5/4])])^(-1), x] + Defer[Int][(1 + L
og[(x*(x + (-1 + x)*(I*Pi + Log[5/4])))/(I*Pi - x + Log[5/4])])^(-2), x] - 2*Defer[Int][1/(x*(1 + Log[(x*(x +
(-1 + x)*(I*Pi + Log[5/4])))/(I*Pi - x + Log[5/4])])^2), x] - (2*I)*Defer[Int][1/((-Pi - I*x + I*Log[5/4])*(1
+ Log[(x*(x + (-1 + x)*(I*Pi + Log[5/4])))/(I*Pi - x + Log[5/4])])^2), x] - I*(Pi - I*Log[5/4])^2*(1 + ((Pi -
I*Log[5/4])*(2 + I*Pi + Log[5/4]))/Sqrt[-(Pi - I*Log[5/4])^4])*Defer[Int][1/((-Sqrt[-(Pi - I*Log[5/4])^4] + (2
*I - Pi + I*Log[5/4])*(I*Pi + Log[5/4]) + 2*x*(Pi - I*(1 + Log[5/4])))*(1 + Log[(x*(x + (-1 + x)*(I*Pi + Log[5
/4])))/(I*Pi - x + Log[5/4])])^2), x] - I*(Pi - I*Log[5/4])^2*(1 - ((Pi - I*Log[5/4])*(2 + I*Pi + Log[5/4]))/S
qrt[-(Pi - I*Log[5/4])^4])*Defer[Int][1/((Sqrt[-(Pi - I*Log[5/4])^4] + (2*I - Pi + I*Log[5/4])*(I*Pi + Log[5/4
]) + 2*x*(Pi - I*(1 + Log[5/4])))*(1 + Log[(x*(x + (-1 + x)*(I*Pi + Log[5/4])))/(I*Pi - x + Log[5/4])])^2), x]
 - 4*(Pi - I*(1 + Log[5/4]))*Defer[Int][1/((-2*Pi + 2*x*(Pi - I*(1 + Log[5/4])) + I*Log[25/16])*(1 + Log[(x*(x
 + (-1 + x)*(I*Pi + Log[5/4])))/(I*Pi - x + Log[5/4])])^2), x]

Rubi steps

integral=2x2+2(2+x)x(iπ+log(54))+(24x+x2)(iπ+log(54))2+x(x2+(1+x)(πilog(54))2+(2+x)x(iπ+log(54)))log(x(x+(1+x)(iπ+log(54)))iπx+log(54))x(π2+x(πilog(54))(2iπ+ilog(54))log2(54)x2(1+iπ+log(54))iπlog(2516))(1+log(x(x+(1+x)(iπ+log(54)))iπx+log(54)))2dx=(11log(x(x+(1+x)(iπ+log(54)))iπx+log(54))+(2x)(iπ2+ilog2(54)x2(πi(1+log(54)))πlog(2516)+2x(iπ2ilog(54)(1+log(54))+π(1+log(2516))))x(iπ2ilog2(54)+x(2iπ+ilog(54))(iπ+log(54))+x2(πi(1+log(54)))+πlog(2516))(1+log(x(x+(1+x)(iπ+log(54)))iπx+log(54)))2)dx=11log(x(x+(1+x)(iπ+log(54)))iπx+log(54))dx+(2x)(iπ2+ilog2(54)x2(πi(1+log(54)))πlog(2516)+2x(iπ2ilog(54)(1+log(54))+π(1+log(2516))))x(iπ2ilog2(54)+x(2iπ+ilog(54))(iπ+log(54))+x2(πi(1+log(54)))+πlog(2516))(1+log(x(x+(1+x)(iπ+log(54)))iπx+log(54)))2dx=11log(x(x+(1+x)(iπ+log(54)))iπx+log(54))dx+(1(1+log(x(x+(1+x)(iπ+log(54)))iπx+log(54)))22x(1+log(x(x+(1+x)(iπ+log(54)))iπx+log(54)))2i(2+x)(πilog(54))2(iπ2ilog2(54)+x(2iπ+ilog(54))(iπ+log(54))+x2(πi(1+log(54)))+πlog(2516))(1+log(x(x+(1+x)(iπ+log(54)))iπx+log(54)))2)dx=(21x(1+log(x(x+(1+x)(iπ+log(54)))iπx+log(54)))2dx)(i(πilog(54))2)2+x(iπ2ilog2(54)+x(2iπ+ilog(54))(iπ+log(54))+x2(πi(1+log(54)))+πlog(2516))(1+log(x(x+(1+x)(iπ+log(54)))iπx+log(54)))2dx+11log(x(x+(1+x)(iπ+log(54)))iπx+log(54))dx+1(1+log(x(x+(1+x)(iπ+log(54)))iπx+log(54)))2dx=(21x(1+log(x(x+(1+x)(iπ+log(54)))iπx+log(54)))2dx)(i(πilog(54))2)(2i(π2x(πilog(54))(2iπ+ilog(54))+log2(54)+x2(1+iπ+log(54))+iπlog(2516))(1+log(x(x+(1+x)(iπ+log(54)))iπx+log(54)))2+x(iπ2ilog2(54)+x(2iπ+ilog(54))(iπ+log(54))+x2(πi(1+log(54)))+πlog(2516))(1+log(x(x+(1+x)(iπ+log(54)))iπx+log(54)))2)dx+11log(x(x+(1+x)(iπ+log(54)))iπx+log(54))dx+1(1+log(x(x+(1+x)(iπ+log(54)))iπx+log(54)))2dx=(21x(1+log(x(x+(1+x)(iπ+log(54)))iπx+log(54)))2dx)(i(πilog(54))2)x(iπ2ilog2(54)+x(2iπ+ilog(54))(iπ+log(54))+x2(πi(1+log(54)))+πlog(2516))(1+log(x(x+(1+x)(iπ+log(54)))iπx+log(54)))2dx(2(πilog(54))2)1(π2x(πilog(54))(2iπ+ilog(54))+log2(54)+x2(1+iπ+log(54))+iπlog(2516))(1+log(x(x+(1+x)(iπ+log(54)))iπx+log(54)))2dx+11log(x(x+(1+x)(iπ+log(54)))iπx+log(54))dx+1(1+log(x(x+(1+x)(iπ+log(54)))iπx+log(54)))2dx=Rest of rules removed due to large latex content

________________________________________________________________________________________

Mathematica [B]  time = 0.47, size = 143, normalized size = 3.76 i(2+x)(iπ+xlog(54))(π(1+x)i(xlog(54)+xlog(54)))(π2(1+x)+log2(54)+x2(1+log(54))xlog(54)(2+log(54))+iπ(x22x(1+log(54))+log(2516)))(1+log(x(x+(1+x)(iπ+log(54)))iπx+log(54)))

Antiderivative was successfully verified.

[In]

Integrate[(2*x^2 + (-4*x + 2*x^2)*(I*Pi + Log[5/4]) + (2 - 4*x + x^2)*(I*Pi + Log[5/4])^2 + (x^3 + (-2*x^2 + x
^3)*(I*Pi + Log[5/4]) + (x - x^2)*(I*Pi + Log[5/4])^2)*Log[(x^2 + (-x + x^2)*(I*Pi + Log[5/4]))/(I*Pi - x + Lo
g[5/4])])/(-x^3 + (2*x^2 - x^3)*(I*Pi + Log[5/4]) + (-x + x^2)*(I*Pi + Log[5/4])^2 + (-2*x^3 + (4*x^2 - 2*x^3)
*(I*Pi + Log[5/4]) + (-2*x + 2*x^2)*(I*Pi + Log[5/4])^2)*Log[(x^2 + (-x + x^2)*(I*Pi + Log[5/4]))/(I*Pi - x +
Log[5/4])] + (-x^3 + (2*x^2 - x^3)*(I*Pi + Log[5/4]) + (-x + x^2)*(I*Pi + Log[5/4])^2)*Log[(x^2 + (-x + x^2)*(
I*Pi + Log[5/4]))/(I*Pi - x + Log[5/4])]^2),x]

[Out]

((-I)*(-2 + x)*((-I)*Pi + x - Log[5/4])*(Pi*(-1 + x) - I*(x - Log[5/4] + x*Log[5/4])))/((Pi^2*(-1 + x) + Log[5
/4]^2 + x^2*(1 + Log[5/4]) - x*Log[5/4]*(2 + Log[5/4]) + I*Pi*(x^2 - 2*x*(1 + Log[5/4]) + Log[25/16]))*(1 + Lo
g[(x*(x + (-1 + x)*(I*Pi + Log[5/4])))/(I*Pi - x + Log[5/4])]))

________________________________________________________________________________________

fricas [A]  time = 1.08, size = 46, normalized size = 1.21 x2log((iπ+1)x2iπx+(x2x)log(54)iπx+log(54))+1

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((((-x^2+x)*(log(5/4)+I*pi)^2+(x^3-2*x^2)*(log(5/4)+I*pi)+x^3)*log(((x^2-x)*(log(5/4)+I*pi)+x^2)/(log
(5/4)+I*pi-x))+(x^2-4*x+2)*(log(5/4)+I*pi)^2+(2*x^2-4*x)*(log(5/4)+I*pi)+2*x^2)/(((x^2-x)*(log(5/4)+I*pi)^2+(-
x^3+2*x^2)*(log(5/4)+I*pi)-x^3)*log(((x^2-x)*(log(5/4)+I*pi)+x^2)/(log(5/4)+I*pi-x))^2+((2*x^2-2*x)*(log(5/4)+
I*pi)^2+(-2*x^3+4*x^2)*(log(5/4)+I*pi)-2*x^3)*log(((x^2-x)*(log(5/4)+I*pi)+x^2)/(log(5/4)+I*pi-x))+(x^2-x)*(lo
g(5/4)+I*pi)^2+(-x^3+2*x^2)*(log(5/4)+I*pi)-x^3),x, algorithm="fricas")

[Out]

-(x - 2)/(log(((I*pi + 1)*x^2 - I*pi*x + (x^2 - x)*log(5/4))/(I*pi - x + log(5/4))) + 1)

________________________________________________________________________________________

giac [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 Timed out

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((((-x^2+x)*(log(5/4)+I*pi)^2+(x^3-2*x^2)*(log(5/4)+I*pi)+x^3)*log(((x^2-x)*(log(5/4)+I*pi)+x^2)/(log
(5/4)+I*pi-x))+(x^2-4*x+2)*(log(5/4)+I*pi)^2+(2*x^2-4*x)*(log(5/4)+I*pi)+2*x^2)/(((x^2-x)*(log(5/4)+I*pi)^2+(-
x^3+2*x^2)*(log(5/4)+I*pi)-x^3)*log(((x^2-x)*(log(5/4)+I*pi)+x^2)/(log(5/4)+I*pi-x))^2+((2*x^2-2*x)*(log(5/4)+
I*pi)^2+(-2*x^3+4*x^2)*(log(5/4)+I*pi)-2*x^3)*log(((x^2-x)*(log(5/4)+I*pi)+x^2)/(log(5/4)+I*pi-x))+(x^2-x)*(lo
g(5/4)+I*pi)^2+(-x^3+2*x^2)*(log(5/4)+I*pi)-x^3),x, algorithm="giac")

[Out]

Timed out

________________________________________________________________________________________

maple [A]  time = 110.66, size = 51, normalized size = 1.34




method result size



risch x2ln((x2x)(ln(5)2ln(2)+iπ)+x2ln(5)2ln(2)+iπx)+1 51
norman 4iπln(5)+2π2+2iπln(5)28iln(2)πln(5)8iπln(2)4ln(2)π2+2π2ln(5)+2iπ3+8iln(2)2π16ln(2)3+24ln(2)2ln(5)12ln(2)ln(5)2+2ln(5)3+2iπ+24ln(2)224ln(2)ln(5)+6ln(5)212ln(2)+6ln(5)+22iπln(5)+iπln(5)24iln(2)πln(5)4iπln(2)2ln(2)π2+π2ln(5)+iπ3+4iln(2)2π8ln(2)3+12ln(2)2ln(5)6ln(2)ln(5)2+ln(5)3+π2+iπ+12ln(2)212ln(2)ln(5)+3ln(5)26ln(2)+3ln(5)+1xln((x2x)(ln(54)+iπ)+x2ln(54)+iπx)+1 283



Verification of antiderivative is not currently implemented for this CAS.

[In]

int((((-x^2+x)*(ln(5/4)+I*Pi)^2+(x^3-2*x^2)*(ln(5/4)+I*Pi)+x^3)*ln(((x^2-x)*(ln(5/4)+I*Pi)+x^2)/(ln(5/4)+I*Pi-
x))+(x^2-4*x+2)*(ln(5/4)+I*Pi)^2+(2*x^2-4*x)*(ln(5/4)+I*Pi)+2*x^2)/(((x^2-x)*(ln(5/4)+I*Pi)^2+(-x^3+2*x^2)*(ln
(5/4)+I*Pi)-x^3)*ln(((x^2-x)*(ln(5/4)+I*Pi)+x^2)/(ln(5/4)+I*Pi-x))^2+((2*x^2-2*x)*(ln(5/4)+I*Pi)^2+(-2*x^3+4*x
^2)*(ln(5/4)+I*Pi)-2*x^3)*ln(((x^2-x)*(ln(5/4)+I*Pi)+x^2)/(ln(5/4)+I*Pi-x))+(x^2-x)*(ln(5/4)+I*Pi)^2+(-x^3+2*x
^2)*(ln(5/4)+I*Pi)-x^3),x,method=_RETURNVERBOSE)

[Out]

-(x-2)/(ln(((x^2-x)*(ln(5)-2*ln(2)+I*Pi)+x^2)/(ln(5)-2*ln(2)+I*Pi-x))+1)

________________________________________________________________________________________

maxima [A]  time = 18.75, size = 54, normalized size = 1.42 ix+2ilog(iπ+(iπlog(5)+2log(2)1)x+log(5)2log(2))log(iπ+xlog(5)+2log(2))+log(x)+1

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((((-x^2+x)*(log(5/4)+I*pi)^2+(x^3-2*x^2)*(log(5/4)+I*pi)+x^3)*log(((x^2-x)*(log(5/4)+I*pi)+x^2)/(log
(5/4)+I*pi-x))+(x^2-4*x+2)*(log(5/4)+I*pi)^2+(2*x^2-4*x)*(log(5/4)+I*pi)+2*x^2)/(((x^2-x)*(log(5/4)+I*pi)^2+(-
x^3+2*x^2)*(log(5/4)+I*pi)-x^3)*log(((x^2-x)*(log(5/4)+I*pi)+x^2)/(log(5/4)+I*pi-x))^2+((2*x^2-2*x)*(log(5/4)+
I*pi)^2+(-2*x^3+4*x^2)*(log(5/4)+I*pi)-2*x^3)*log(((x^2-x)*(log(5/4)+I*pi)+x^2)/(log(5/4)+I*pi-x))+(x^2-x)*(lo
g(5/4)+I*pi)^2+(-x^3+2*x^2)*(log(5/4)+I*pi)-x^3),x, algorithm="maxima")

[Out]

(-I*x + 2*I)/(log(I*pi + (-I*pi - log(5) + 2*log(2) - 1)*x + log(5) - 2*log(2)) - log(-I*pi + x - log(5) + 2*l
og(2)) + log(x) + 1)

________________________________________________________________________________________

mupad [F(-1)]  time = 0.00, size = -1, normalized size = -0.03 Hanged

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(-(log((x^2 - (x - x^2)*(Pi*1i + log(5/4)))/(Pi*1i - x + log(5/4)))*((x - x^2)*(Pi*1i + log(5/4))^2 - (Pi*1
i + log(5/4))*(2*x^2 - x^3) + x^3) - (4*x - 2*x^2)*(Pi*1i + log(5/4)) + (Pi*1i + log(5/4))^2*(x^2 - 4*x + 2) +
 2*x^2)/((x - x^2)*(Pi*1i + log(5/4))^2 + log((x^2 - (x - x^2)*(Pi*1i + log(5/4)))/(Pi*1i - x + log(5/4)))^2*(
(x - x^2)*(Pi*1i + log(5/4))^2 - (Pi*1i + log(5/4))*(2*x^2 - x^3) + x^3) - (Pi*1i + log(5/4))*(2*x^2 - x^3) +
x^3 + log((x^2 - (x - x^2)*(Pi*1i + log(5/4)))/(Pi*1i - x + log(5/4)))*((2*x - 2*x^2)*(Pi*1i + log(5/4))^2 - (
Pi*1i + log(5/4))*(4*x^2 - 2*x^3) + 2*x^3)),x)

[Out]

\text{Hanged}

________________________________________________________________________________________

sympy [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 Timed out

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((((-x**2+x)*(ln(5/4)+I*pi)**2+(x**3-2*x**2)*(ln(5/4)+I*pi)+x**3)*ln(((x**2-x)*(ln(5/4)+I*pi)+x**2)/(
ln(5/4)+I*pi-x))+(x**2-4*x+2)*(ln(5/4)+I*pi)**2+(2*x**2-4*x)*(ln(5/4)+I*pi)+2*x**2)/(((x**2-x)*(ln(5/4)+I*pi)*
*2+(-x**3+2*x**2)*(ln(5/4)+I*pi)-x**3)*ln(((x**2-x)*(ln(5/4)+I*pi)+x**2)/(ln(5/4)+I*pi-x))**2+((2*x**2-2*x)*(l
n(5/4)+I*pi)**2+(-2*x**3+4*x**2)*(ln(5/4)+I*pi)-2*x**3)*ln(((x**2-x)*(ln(5/4)+I*pi)+x**2)/(ln(5/4)+I*pi-x))+(x
**2-x)*(ln(5/4)+I*pi)**2+(-x**3+2*x**2)*(ln(5/4)+I*pi)-x**3),x)

[Out]

Timed out

________________________________________________________________________________________