Optimal. Leaf size=38 \[ \frac {2-x}{1+\log \left (-x+\frac {x^2}{1-\frac {x}{i \pi +\log \left (\frac {5}{4}\right )}}\right )} \]
________________________________________________________________________________________
Rubi [F] time = 13.69, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {2 x^2+\left (-4 x+2 x^2\right ) \left (i \pi +\log \left (\frac {5}{4}\right )\right )+\left (2-4 x+x^2\right ) \left (i \pi +\log \left (\frac {5}{4}\right )\right )^2+\left (x^3+\left (-2 x^2+x^3\right ) \left (i \pi +\log \left (\frac {5}{4}\right )\right )+\left (x-x^2\right ) \left (i \pi +\log \left (\frac {5}{4}\right )\right )^2\right ) \log \left (\frac {x^2+\left (-x+x^2\right ) \left (i \pi +\log \left (\frac {5}{4}\right )\right )}{i \pi -x+\log \left (\frac {5}{4}\right )}\right )}{-x^3+\left (2 x^2-x^3\right ) \left (i \pi +\log \left (\frac {5}{4}\right )\right )+\left (-x+x^2\right ) \left (i \pi +\log \left (\frac {5}{4}\right )\right )^2+\left (-2 x^3+\left (4 x^2-2 x^3\right ) \left (i \pi +\log \left (\frac {5}{4}\right )\right )+\left (-2 x+2 x^2\right ) \left (i \pi +\log \left (\frac {5}{4}\right )\right )^2\right ) \log \left (\frac {x^2+\left (-x+x^2\right ) \left (i \pi +\log \left (\frac {5}{4}\right )\right )}{i \pi -x+\log \left (\frac {5}{4}\right )}\right )+\left (-x^3+\left (2 x^2-x^3\right ) \left (i \pi +\log \left (\frac {5}{4}\right )\right )+\left (-x+x^2\right ) \left (i \pi +\log \left (\frac {5}{4}\right )\right )^2\right ) \log ^2\left (\frac {x^2+\left (-x+x^2\right ) \left (i \pi +\log \left (\frac {5}{4}\right )\right )}{i \pi -x+\log \left (\frac {5}{4}\right )}\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {2 x^2+2 (-2+x) x \left (i \pi +\log \left (\frac {5}{4}\right )\right )+\left (2-4 x+x^2\right ) \left (i \pi +\log \left (\frac {5}{4}\right )\right )^2+x \left (x^2+(-1+x) \left (\pi -i \log \left (\frac {5}{4}\right )\right )^2+(-2+x) x \left (i \pi +\log \left (\frac {5}{4}\right )\right )\right ) \log \left (\frac {x \left (x+(-1+x) \left (i \pi +\log \left (\frac {5}{4}\right )\right )\right )}{i \pi -x+\log \left (\frac {5}{4}\right )}\right )}{x \left (\pi ^2+x \left (\pi -i \log \left (\frac {5}{4}\right )\right ) \left (2 i-\pi +i \log \left (\frac {5}{4}\right )\right )-\log ^2\left (\frac {5}{4}\right )-x^2 \left (1+i \pi +\log \left (\frac {5}{4}\right )\right )-i \pi \log \left (\frac {25}{16}\right )\right ) \left (1+\log \left (\frac {x \left (x+(-1+x) \left (i \pi +\log \left (\frac {5}{4}\right )\right )\right )}{i \pi -x+\log \left (\frac {5}{4}\right )}\right )\right )^2} \, dx\\ &=\int \left (\frac {1}{-1-\log \left (\frac {x \left (x+(-1+x) \left (i \pi +\log \left (\frac {5}{4}\right )\right )\right )}{i \pi -x+\log \left (\frac {5}{4}\right )}\right )}+\frac {(2-x) \left (-i \pi ^2+i \log ^2\left (\frac {5}{4}\right )-x^2 \left (\pi -i \left (1+\log \left (\frac {5}{4}\right )\right )\right )-\pi \log \left (\frac {25}{16}\right )+2 x \left (i \pi ^2-i \log \left (\frac {5}{4}\right ) \left (1+\log \left (\frac {5}{4}\right )\right )+\pi \left (1+\log \left (\frac {25}{16}\right )\right )\right )\right )}{x \left (i \pi ^2-i \log ^2\left (\frac {5}{4}\right )+x \left (2 i-\pi +i \log \left (\frac {5}{4}\right )\right ) \left (i \pi +\log \left (\frac {5}{4}\right )\right )+x^2 \left (\pi -i \left (1+\log \left (\frac {5}{4}\right )\right )\right )+\pi \log \left (\frac {25}{16}\right )\right ) \left (1+\log \left (\frac {x \left (x+(-1+x) \left (i \pi +\log \left (\frac {5}{4}\right )\right )\right )}{i \pi -x+\log \left (\frac {5}{4}\right )}\right )\right )^2}\right ) \, dx\\ &=\int \frac {1}{-1-\log \left (\frac {x \left (x+(-1+x) \left (i \pi +\log \left (\frac {5}{4}\right )\right )\right )}{i \pi -x+\log \left (\frac {5}{4}\right )}\right )} \, dx+\int \frac {(2-x) \left (-i \pi ^2+i \log ^2\left (\frac {5}{4}\right )-x^2 \left (\pi -i \left (1+\log \left (\frac {5}{4}\right )\right )\right )-\pi \log \left (\frac {25}{16}\right )+2 x \left (i \pi ^2-i \log \left (\frac {5}{4}\right ) \left (1+\log \left (\frac {5}{4}\right )\right )+\pi \left (1+\log \left (\frac {25}{16}\right )\right )\right )\right )}{x \left (i \pi ^2-i \log ^2\left (\frac {5}{4}\right )+x \left (2 i-\pi +i \log \left (\frac {5}{4}\right )\right ) \left (i \pi +\log \left (\frac {5}{4}\right )\right )+x^2 \left (\pi -i \left (1+\log \left (\frac {5}{4}\right )\right )\right )+\pi \log \left (\frac {25}{16}\right )\right ) \left (1+\log \left (\frac {x \left (x+(-1+x) \left (i \pi +\log \left (\frac {5}{4}\right )\right )\right )}{i \pi -x+\log \left (\frac {5}{4}\right )}\right )\right )^2} \, dx\\ &=\int \frac {1}{-1-\log \left (\frac {x \left (x+(-1+x) \left (i \pi +\log \left (\frac {5}{4}\right )\right )\right )}{i \pi -x+\log \left (\frac {5}{4}\right )}\right )} \, dx+\int \left (\frac {1}{\left (1+\log \left (\frac {x \left (x+(-1+x) \left (i \pi +\log \left (\frac {5}{4}\right )\right )\right )}{i \pi -x+\log \left (\frac {5}{4}\right )}\right )\right )^2}-\frac {2}{x \left (1+\log \left (\frac {x \left (x+(-1+x) \left (i \pi +\log \left (\frac {5}{4}\right )\right )\right )}{i \pi -x+\log \left (\frac {5}{4}\right )}\right )\right )^2}-\frac {i (-2+x) \left (\pi -i \log \left (\frac {5}{4}\right )\right )^2}{\left (i \pi ^2-i \log ^2\left (\frac {5}{4}\right )+x \left (2 i-\pi +i \log \left (\frac {5}{4}\right )\right ) \left (i \pi +\log \left (\frac {5}{4}\right )\right )+x^2 \left (\pi -i \left (1+\log \left (\frac {5}{4}\right )\right )\right )+\pi \log \left (\frac {25}{16}\right )\right ) \left (1+\log \left (\frac {x \left (x+(-1+x) \left (i \pi +\log \left (\frac {5}{4}\right )\right )\right )}{i \pi -x+\log \left (\frac {5}{4}\right )}\right )\right )^2}\right ) \, dx\\ &=-\left (2 \int \frac {1}{x \left (1+\log \left (\frac {x \left (x+(-1+x) \left (i \pi +\log \left (\frac {5}{4}\right )\right )\right )}{i \pi -x+\log \left (\frac {5}{4}\right )}\right )\right )^2} \, dx\right )-\left (i \left (\pi -i \log \left (\frac {5}{4}\right )\right )^2\right ) \int \frac {-2+x}{\left (i \pi ^2-i \log ^2\left (\frac {5}{4}\right )+x \left (2 i-\pi +i \log \left (\frac {5}{4}\right )\right ) \left (i \pi +\log \left (\frac {5}{4}\right )\right )+x^2 \left (\pi -i \left (1+\log \left (\frac {5}{4}\right )\right )\right )+\pi \log \left (\frac {25}{16}\right )\right ) \left (1+\log \left (\frac {x \left (x+(-1+x) \left (i \pi +\log \left (\frac {5}{4}\right )\right )\right )}{i \pi -x+\log \left (\frac {5}{4}\right )}\right )\right )^2} \, dx+\int \frac {1}{-1-\log \left (\frac {x \left (x+(-1+x) \left (i \pi +\log \left (\frac {5}{4}\right )\right )\right )}{i \pi -x+\log \left (\frac {5}{4}\right )}\right )} \, dx+\int \frac {1}{\left (1+\log \left (\frac {x \left (x+(-1+x) \left (i \pi +\log \left (\frac {5}{4}\right )\right )\right )}{i \pi -x+\log \left (\frac {5}{4}\right )}\right )\right )^2} \, dx\\ &=-\left (2 \int \frac {1}{x \left (1+\log \left (\frac {x \left (x+(-1+x) \left (i \pi +\log \left (\frac {5}{4}\right )\right )\right )}{i \pi -x+\log \left (\frac {5}{4}\right )}\right )\right )^2} \, dx\right )-\left (i \left (\pi -i \log \left (\frac {5}{4}\right )\right )^2\right ) \int \left (-\frac {2 i}{\left (-\pi ^2-x \left (\pi -i \log \left (\frac {5}{4}\right )\right ) \left (2 i-\pi +i \log \left (\frac {5}{4}\right )\right )+\log ^2\left (\frac {5}{4}\right )+x^2 \left (1+i \pi +\log \left (\frac {5}{4}\right )\right )+i \pi \log \left (\frac {25}{16}\right )\right ) \left (1+\log \left (\frac {x \left (x+(-1+x) \left (i \pi +\log \left (\frac {5}{4}\right )\right )\right )}{i \pi -x+\log \left (\frac {5}{4}\right )}\right )\right )^2}+\frac {x}{\left (i \pi ^2-i \log ^2\left (\frac {5}{4}\right )+x \left (2 i-\pi +i \log \left (\frac {5}{4}\right )\right ) \left (i \pi +\log \left (\frac {5}{4}\right )\right )+x^2 \left (\pi -i \left (1+\log \left (\frac {5}{4}\right )\right )\right )+\pi \log \left (\frac {25}{16}\right )\right ) \left (1+\log \left (\frac {x \left (x+(-1+x) \left (i \pi +\log \left (\frac {5}{4}\right )\right )\right )}{i \pi -x+\log \left (\frac {5}{4}\right )}\right )\right )^2}\right ) \, dx+\int \frac {1}{-1-\log \left (\frac {x \left (x+(-1+x) \left (i \pi +\log \left (\frac {5}{4}\right )\right )\right )}{i \pi -x+\log \left (\frac {5}{4}\right )}\right )} \, dx+\int \frac {1}{\left (1+\log \left (\frac {x \left (x+(-1+x) \left (i \pi +\log \left (\frac {5}{4}\right )\right )\right )}{i \pi -x+\log \left (\frac {5}{4}\right )}\right )\right )^2} \, dx\\ &=-\left (2 \int \frac {1}{x \left (1+\log \left (\frac {x \left (x+(-1+x) \left (i \pi +\log \left (\frac {5}{4}\right )\right )\right )}{i \pi -x+\log \left (\frac {5}{4}\right )}\right )\right )^2} \, dx\right )-\left (i \left (\pi -i \log \left (\frac {5}{4}\right )\right )^2\right ) \int \frac {x}{\left (i \pi ^2-i \log ^2\left (\frac {5}{4}\right )+x \left (2 i-\pi +i \log \left (\frac {5}{4}\right )\right ) \left (i \pi +\log \left (\frac {5}{4}\right )\right )+x^2 \left (\pi -i \left (1+\log \left (\frac {5}{4}\right )\right )\right )+\pi \log \left (\frac {25}{16}\right )\right ) \left (1+\log \left (\frac {x \left (x+(-1+x) \left (i \pi +\log \left (\frac {5}{4}\right )\right )\right )}{i \pi -x+\log \left (\frac {5}{4}\right )}\right )\right )^2} \, dx-\left (2 \left (\pi -i \log \left (\frac {5}{4}\right )\right )^2\right ) \int \frac {1}{\left (-\pi ^2-x \left (\pi -i \log \left (\frac {5}{4}\right )\right ) \left (2 i-\pi +i \log \left (\frac {5}{4}\right )\right )+\log ^2\left (\frac {5}{4}\right )+x^2 \left (1+i \pi +\log \left (\frac {5}{4}\right )\right )+i \pi \log \left (\frac {25}{16}\right )\right ) \left (1+\log \left (\frac {x \left (x+(-1+x) \left (i \pi +\log \left (\frac {5}{4}\right )\right )\right )}{i \pi -x+\log \left (\frac {5}{4}\right )}\right )\right )^2} \, dx+\int \frac {1}{-1-\log \left (\frac {x \left (x+(-1+x) \left (i \pi +\log \left (\frac {5}{4}\right )\right )\right )}{i \pi -x+\log \left (\frac {5}{4}\right )}\right )} \, dx+\int \frac {1}{\left (1+\log \left (\frac {x \left (x+(-1+x) \left (i \pi +\log \left (\frac {5}{4}\right )\right )\right )}{i \pi -x+\log \left (\frac {5}{4}\right )}\right )\right )^2} \, dx\\ &=\text {Rest of rules removed due to large latex content} \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [B] time = 0.47, size = 143, normalized size = 3.76 \begin {gather*} -\frac {i (-2+x) \left (-i \pi +x-\log \left (\frac {5}{4}\right )\right ) \left (\pi (-1+x)-i \left (x-\log \left (\frac {5}{4}\right )+x \log \left (\frac {5}{4}\right )\right )\right )}{\left (\pi ^2 (-1+x)+\log ^2\left (\frac {5}{4}\right )+x^2 \left (1+\log \left (\frac {5}{4}\right )\right )-x \log \left (\frac {5}{4}\right ) \left (2+\log \left (\frac {5}{4}\right )\right )+i \pi \left (x^2-2 x \left (1+\log \left (\frac {5}{4}\right )\right )+\log \left (\frac {25}{16}\right )\right )\right ) \left (1+\log \left (\frac {x \left (x+(-1+x) \left (i \pi +\log \left (\frac {5}{4}\right )\right )\right )}{i \pi -x+\log \left (\frac {5}{4}\right )}\right )\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 1.08, size = 46, normalized size = 1.21 \begin {gather*} -\frac {x - 2}{\log \left (\frac {{\left (i \, \pi + 1\right )} x^{2} - i \, \pi x + {\left (x^{2} - x\right )} \log \left (\frac {5}{4}\right )}{i \, \pi - x + \log \left (\frac {5}{4}\right )}\right ) + 1} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F(-1)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 110.66, size = 51, normalized size = 1.34
method | result | size |
risch | \(-\frac {x -2}{\ln \left (\frac {\left (x^{2}-x \right ) \left (\ln \relax (5)-2 \ln \relax (2)+i \pi \right )+x^{2}}{\ln \relax (5)-2 \ln \relax (2)+i \pi -x}\right )+1}\) | \(51\) |
norman | \(\frac {\frac {4 i \pi \ln \relax (5)+2 \pi ^{2}+2 i \pi \ln \relax (5)^{2}-8 i \ln \relax (2) \pi \ln \relax (5)-8 i \pi \ln \relax (2)-4 \ln \relax (2) \pi ^{2}+2 \pi ^{2} \ln \relax (5)+2 i \pi ^{3}+8 i \ln \relax (2)^{2} \pi -16 \ln \relax (2)^{3}+24 \ln \relax (2)^{2} \ln \relax (5)-12 \ln \relax (2) \ln \relax (5)^{2}+2 \ln \relax (5)^{3}+2 i \pi +24 \ln \relax (2)^{2}-24 \ln \relax (2) \ln \relax (5)+6 \ln \relax (5)^{2}-12 \ln \relax (2)+6 \ln \relax (5)+2}{2 i \pi \ln \relax (5)+i \pi \ln \relax (5)^{2}-4 i \ln \relax (2) \pi \ln \relax (5)-4 i \pi \ln \relax (2)-2 \ln \relax (2) \pi ^{2}+\pi ^{2} \ln \relax (5)+i \pi ^{3}+4 i \ln \relax (2)^{2} \pi -8 \ln \relax (2)^{3}+12 \ln \relax (2)^{2} \ln \relax (5)-6 \ln \relax (2) \ln \relax (5)^{2}+\ln \relax (5)^{3}+\pi ^{2}+i \pi +12 \ln \relax (2)^{2}-12 \ln \relax (2) \ln \relax (5)+3 \ln \relax (5)^{2}-6 \ln \relax (2)+3 \ln \relax (5)+1}-x}{\ln \left (\frac {\left (x^{2}-x \right ) \left (\ln \left (\frac {5}{4}\right )+i \pi \right )+x^{2}}{\ln \left (\frac {5}{4}\right )+i \pi -x}\right )+1}\) | \(283\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 18.75, size = 54, normalized size = 1.42 \begin {gather*} \frac {-i \, x + 2 i}{\log \left (i \, \pi + {\left (-i \, \pi - \log \relax (5) + 2 \, \log \relax (2) - 1\right )} x + \log \relax (5) - 2 \, \log \relax (2)\right ) - \log \left (-i \, \pi + x - \log \relax (5) + 2 \, \log \relax (2)\right ) + \log \relax (x) + 1} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F(-1)] time = 0.00, size = -1, normalized size = -0.03 \begin {gather*} \text {Hanged} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [F(-1)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________