3.41.10
Optimal. Leaf size=38
________________________________________________________________________________________
Rubi [F] time = 13.69, antiderivative size = 0, normalized size of antiderivative = 0.00,
number of steps used = 0, number of rules used = 0, integrand size = 0, = 0.000, Rules used =
{}
Verification is not applicable to the result.
[In]
Int[(2*x^2 + (-4*x + 2*x^2)*(I*Pi + Log[5/4]) + (2 - 4*x + x^2)*(I*Pi + Log[5/4])^2 + (x^3 + (-2*x^2 + x^3)*(I
*Pi + Log[5/4]) + (x - x^2)*(I*Pi + Log[5/4])^2)*Log[(x^2 + (-x + x^2)*(I*Pi + Log[5/4]))/(I*Pi - x + Log[5/4]
)])/(-x^3 + (2*x^2 - x^3)*(I*Pi + Log[5/4]) + (-x + x^2)*(I*Pi + Log[5/4])^2 + (-2*x^3 + (4*x^2 - 2*x^3)*(I*Pi
+ Log[5/4]) + (-2*x + 2*x^2)*(I*Pi + Log[5/4])^2)*Log[(x^2 + (-x + x^2)*(I*Pi + Log[5/4]))/(I*Pi - x + Log[5/
4])] + (-x^3 + (2*x^2 - x^3)*(I*Pi + Log[5/4]) + (-x + x^2)*(I*Pi + Log[5/4])^2)*Log[(x^2 + (-x + x^2)*(I*Pi +
Log[5/4]))/(I*Pi - x + Log[5/4])]^2),x]
[Out]
Defer[Int][(-1 - Log[(x*(x + (-1 + x)*(I*Pi + Log[5/4])))/(I*Pi - x + Log[5/4])])^(-1), x] + Defer[Int][(1 + L
og[(x*(x + (-1 + x)*(I*Pi + Log[5/4])))/(I*Pi - x + Log[5/4])])^(-2), x] - 2*Defer[Int][1/(x*(1 + Log[(x*(x +
(-1 + x)*(I*Pi + Log[5/4])))/(I*Pi - x + Log[5/4])])^2), x] - (2*I)*Defer[Int][1/((-Pi - I*x + I*Log[5/4])*(1
+ Log[(x*(x + (-1 + x)*(I*Pi + Log[5/4])))/(I*Pi - x + Log[5/4])])^2), x] - I*(Pi - I*Log[5/4])^2*(1 + ((Pi -
I*Log[5/4])*(2 + I*Pi + Log[5/4]))/Sqrt[-(Pi - I*Log[5/4])^4])*Defer[Int][1/((-Sqrt[-(Pi - I*Log[5/4])^4] + (2
*I - Pi + I*Log[5/4])*(I*Pi + Log[5/4]) + 2*x*(Pi - I*(1 + Log[5/4])))*(1 + Log[(x*(x + (-1 + x)*(I*Pi + Log[5
/4])))/(I*Pi - x + Log[5/4])])^2), x] - I*(Pi - I*Log[5/4])^2*(1 - ((Pi - I*Log[5/4])*(2 + I*Pi + Log[5/4]))/S
qrt[-(Pi - I*Log[5/4])^4])*Defer[Int][1/((Sqrt[-(Pi - I*Log[5/4])^4] + (2*I - Pi + I*Log[5/4])*(I*Pi + Log[5/4
]) + 2*x*(Pi - I*(1 + Log[5/4])))*(1 + Log[(x*(x + (-1 + x)*(I*Pi + Log[5/4])))/(I*Pi - x + Log[5/4])])^2), x]
- 4*(Pi - I*(1 + Log[5/4]))*Defer[Int][1/((-2*Pi + 2*x*(Pi - I*(1 + Log[5/4])) + I*Log[25/16])*(1 + Log[(x*(x
+ (-1 + x)*(I*Pi + Log[5/4])))/(I*Pi - x + Log[5/4])])^2), x]
Rubi steps
________________________________________________________________________________________
Mathematica [B] time = 0.47, size = 143, normalized size = 3.76
Antiderivative was successfully verified.
[In]
Integrate[(2*x^2 + (-4*x + 2*x^2)*(I*Pi + Log[5/4]) + (2 - 4*x + x^2)*(I*Pi + Log[5/4])^2 + (x^3 + (-2*x^2 + x
^3)*(I*Pi + Log[5/4]) + (x - x^2)*(I*Pi + Log[5/4])^2)*Log[(x^2 + (-x + x^2)*(I*Pi + Log[5/4]))/(I*Pi - x + Lo
g[5/4])])/(-x^3 + (2*x^2 - x^3)*(I*Pi + Log[5/4]) + (-x + x^2)*(I*Pi + Log[5/4])^2 + (-2*x^3 + (4*x^2 - 2*x^3)
*(I*Pi + Log[5/4]) + (-2*x + 2*x^2)*(I*Pi + Log[5/4])^2)*Log[(x^2 + (-x + x^2)*(I*Pi + Log[5/4]))/(I*Pi - x +
Log[5/4])] + (-x^3 + (2*x^2 - x^3)*(I*Pi + Log[5/4]) + (-x + x^2)*(I*Pi + Log[5/4])^2)*Log[(x^2 + (-x + x^2)*(
I*Pi + Log[5/4]))/(I*Pi - x + Log[5/4])]^2),x]
[Out]
((-I)*(-2 + x)*((-I)*Pi + x - Log[5/4])*(Pi*(-1 + x) - I*(x - Log[5/4] + x*Log[5/4])))/((Pi^2*(-1 + x) + Log[5
/4]^2 + x^2*(1 + Log[5/4]) - x*Log[5/4]*(2 + Log[5/4]) + I*Pi*(x^2 - 2*x*(1 + Log[5/4]) + Log[25/16]))*(1 + Lo
g[(x*(x + (-1 + x)*(I*Pi + Log[5/4])))/(I*Pi - x + Log[5/4])]))
________________________________________________________________________________________
fricas [A] time = 1.08, size = 46, normalized size = 1.21
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate((((-x^2+x)*(log(5/4)+I*pi)^2+(x^3-2*x^2)*(log(5/4)+I*pi)+x^3)*log(((x^2-x)*(log(5/4)+I*pi)+x^2)/(log
(5/4)+I*pi-x))+(x^2-4*x+2)*(log(5/4)+I*pi)^2+(2*x^2-4*x)*(log(5/4)+I*pi)+2*x^2)/(((x^2-x)*(log(5/4)+I*pi)^2+(-
x^3+2*x^2)*(log(5/4)+I*pi)-x^3)*log(((x^2-x)*(log(5/4)+I*pi)+x^2)/(log(5/4)+I*pi-x))^2+((2*x^2-2*x)*(log(5/4)+
I*pi)^2+(-2*x^3+4*x^2)*(log(5/4)+I*pi)-2*x^3)*log(((x^2-x)*(log(5/4)+I*pi)+x^2)/(log(5/4)+I*pi-x))+(x^2-x)*(lo
g(5/4)+I*pi)^2+(-x^3+2*x^2)*(log(5/4)+I*pi)-x^3),x, algorithm="fricas")
[Out]
-(x - 2)/(log(((I*pi + 1)*x^2 - I*pi*x + (x^2 - x)*log(5/4))/(I*pi - x + log(5/4))) + 1)
________________________________________________________________________________________
giac [F(-1)] time = 0.00, size = 0, normalized size = 0.00
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate((((-x^2+x)*(log(5/4)+I*pi)^2+(x^3-2*x^2)*(log(5/4)+I*pi)+x^3)*log(((x^2-x)*(log(5/4)+I*pi)+x^2)/(log
(5/4)+I*pi-x))+(x^2-4*x+2)*(log(5/4)+I*pi)^2+(2*x^2-4*x)*(log(5/4)+I*pi)+2*x^2)/(((x^2-x)*(log(5/4)+I*pi)^2+(-
x^3+2*x^2)*(log(5/4)+I*pi)-x^3)*log(((x^2-x)*(log(5/4)+I*pi)+x^2)/(log(5/4)+I*pi-x))^2+((2*x^2-2*x)*(log(5/4)+
I*pi)^2+(-2*x^3+4*x^2)*(log(5/4)+I*pi)-2*x^3)*log(((x^2-x)*(log(5/4)+I*pi)+x^2)/(log(5/4)+I*pi-x))+(x^2-x)*(lo
g(5/4)+I*pi)^2+(-x^3+2*x^2)*(log(5/4)+I*pi)-x^3),x, algorithm="giac")
[Out]
Timed out
________________________________________________________________________________________
maple [A] time = 110.66, size = 51, normalized size = 1.34
|
|
|
method |
result |
size |
|
|
|
risch |
|
|
norman |
|
|
|
|
|
|
|
|
|
|
|
|
Verification of antiderivative is not currently implemented for this CAS.
[In]
int((((-x^2+x)*(ln(5/4)+I*Pi)^2+(x^3-2*x^2)*(ln(5/4)+I*Pi)+x^3)*ln(((x^2-x)*(ln(5/4)+I*Pi)+x^2)/(ln(5/4)+I*Pi-
x))+(x^2-4*x+2)*(ln(5/4)+I*Pi)^2+(2*x^2-4*x)*(ln(5/4)+I*Pi)+2*x^2)/(((x^2-x)*(ln(5/4)+I*Pi)^2+(-x^3+2*x^2)*(ln
(5/4)+I*Pi)-x^3)*ln(((x^2-x)*(ln(5/4)+I*Pi)+x^2)/(ln(5/4)+I*Pi-x))^2+((2*x^2-2*x)*(ln(5/4)+I*Pi)^2+(-2*x^3+4*x
^2)*(ln(5/4)+I*Pi)-2*x^3)*ln(((x^2-x)*(ln(5/4)+I*Pi)+x^2)/(ln(5/4)+I*Pi-x))+(x^2-x)*(ln(5/4)+I*Pi)^2+(-x^3+2*x
^2)*(ln(5/4)+I*Pi)-x^3),x,method=_RETURNVERBOSE)
[Out]
-(x-2)/(ln(((x^2-x)*(ln(5)-2*ln(2)+I*Pi)+x^2)/(ln(5)-2*ln(2)+I*Pi-x))+1)
________________________________________________________________________________________
maxima [A] time = 18.75, size = 54, normalized size = 1.42
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate((((-x^2+x)*(log(5/4)+I*pi)^2+(x^3-2*x^2)*(log(5/4)+I*pi)+x^3)*log(((x^2-x)*(log(5/4)+I*pi)+x^2)/(log
(5/4)+I*pi-x))+(x^2-4*x+2)*(log(5/4)+I*pi)^2+(2*x^2-4*x)*(log(5/4)+I*pi)+2*x^2)/(((x^2-x)*(log(5/4)+I*pi)^2+(-
x^3+2*x^2)*(log(5/4)+I*pi)-x^3)*log(((x^2-x)*(log(5/4)+I*pi)+x^2)/(log(5/4)+I*pi-x))^2+((2*x^2-2*x)*(log(5/4)+
I*pi)^2+(-2*x^3+4*x^2)*(log(5/4)+I*pi)-2*x^3)*log(((x^2-x)*(log(5/4)+I*pi)+x^2)/(log(5/4)+I*pi-x))+(x^2-x)*(lo
g(5/4)+I*pi)^2+(-x^3+2*x^2)*(log(5/4)+I*pi)-x^3),x, algorithm="maxima")
[Out]
(-I*x + 2*I)/(log(I*pi + (-I*pi - log(5) + 2*log(2) - 1)*x + log(5) - 2*log(2)) - log(-I*pi + x - log(5) + 2*l
og(2)) + log(x) + 1)
________________________________________________________________________________________
mupad [F(-1)] time = 0.00, size = -1, normalized size = -0.03
Verification of antiderivative is not currently implemented for this CAS.
[In]
int(-(log((x^2 - (x - x^2)*(Pi*1i + log(5/4)))/(Pi*1i - x + log(5/4)))*((x - x^2)*(Pi*1i + log(5/4))^2 - (Pi*1
i + log(5/4))*(2*x^2 - x^3) + x^3) - (4*x - 2*x^2)*(Pi*1i + log(5/4)) + (Pi*1i + log(5/4))^2*(x^2 - 4*x + 2) +
2*x^2)/((x - x^2)*(Pi*1i + log(5/4))^2 + log((x^2 - (x - x^2)*(Pi*1i + log(5/4)))/(Pi*1i - x + log(5/4)))^2*(
(x - x^2)*(Pi*1i + log(5/4))^2 - (Pi*1i + log(5/4))*(2*x^2 - x^3) + x^3) - (Pi*1i + log(5/4))*(2*x^2 - x^3) +
x^3 + log((x^2 - (x - x^2)*(Pi*1i + log(5/4)))/(Pi*1i - x + log(5/4)))*((2*x - 2*x^2)*(Pi*1i + log(5/4))^2 - (
Pi*1i + log(5/4))*(4*x^2 - 2*x^3) + 2*x^3)),x)
[Out]
\text{Hanged}
________________________________________________________________________________________
sympy [F(-1)] time = 0.00, size = 0, normalized size = 0.00
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate((((-x**2+x)*(ln(5/4)+I*pi)**2+(x**3-2*x**2)*(ln(5/4)+I*pi)+x**3)*ln(((x**2-x)*(ln(5/4)+I*pi)+x**2)/(
ln(5/4)+I*pi-x))+(x**2-4*x+2)*(ln(5/4)+I*pi)**2+(2*x**2-4*x)*(ln(5/4)+I*pi)+2*x**2)/(((x**2-x)*(ln(5/4)+I*pi)*
*2+(-x**3+2*x**2)*(ln(5/4)+I*pi)-x**3)*ln(((x**2-x)*(ln(5/4)+I*pi)+x**2)/(ln(5/4)+I*pi-x))**2+((2*x**2-2*x)*(l
n(5/4)+I*pi)**2+(-2*x**3+4*x**2)*(ln(5/4)+I*pi)-2*x**3)*ln(((x**2-x)*(ln(5/4)+I*pi)+x**2)/(ln(5/4)+I*pi-x))+(x
**2-x)*(ln(5/4)+I*pi)**2+(-x**3+2*x**2)*(ln(5/4)+I*pi)-x**3),x)
[Out]
Timed out
________________________________________________________________________________________