3.41.25
Optimal. Leaf size=22
________________________________________________________________________________________
Rubi [F] time = 0.22, antiderivative size = 0, normalized size of antiderivative = 0.00,
number of steps used = 0, number of rules used = 0, integrand size = 0, = 0.000, Rules used =
{}
Verification is not applicable to the result.
[In]
Int[(Log[E^(-10 + 2*x + 2*Log[x]^2)]^2 + Log[E^(-10 + 2*x + 2*Log[x]^2)]*(4*x + 8*Log[x]))/Log[2]^4,x]
[Out]
(4*Defer[Int][x*Log[E^(2*(-5 + x + Log[x]^2))], x])/Log[2]^4 + Defer[Int][Log[E^(2*(-5 + x + Log[x]^2))]^2, x]
/Log[2]^4 + (8*Defer[Int][Log[E^(2*(-5 + x + Log[x]^2))]*Log[x], x])/Log[2]^4
Rubi steps
________________________________________________________________________________________
Mathematica [A] time = 0.08, size = 20, normalized size = 0.91
Antiderivative was successfully verified.
[In]
Integrate[(Log[E^(-10 + 2*x + 2*Log[x]^2)]^2 + Log[E^(-10 + 2*x + 2*Log[x]^2)]*(4*x + 8*Log[x]))/Log[2]^4,x]
[Out]
(x*Log[E^(2*(-5 + x + Log[x]^2))]^2)/Log[2]^4
________________________________________________________________________________________
fricas [A] time = 0.93, size = 37, normalized size = 1.68
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate((log(exp(x)^2*exp(log(x)^2-5)^2)^2+(8*log(x)+4*x)*log(exp(x)^2*exp(log(x)^2-5)^2))/log(2)^4,x, algor
ithm="fricas")
[Out]
4*(x*log(x)^4 + x^3 + 2*(x^2 - 5*x)*log(x)^2 - 10*x^2 + 25*x)/log(2)^4
________________________________________________________________________________________
giac [A] time = 0.23, size = 40, normalized size = 1.82
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate((log(exp(x)^2*exp(log(x)^2-5)^2)^2+(8*log(x)+4*x)*log(exp(x)^2*exp(log(x)^2-5)^2))/log(2)^4,x, algor
ithm="giac")
[Out]
4*(x*log(x)^4 + 2*x^2*log(x)^2 + x^3 - 10*x*log(x)^2 - 10*x^2 + 25*x)/log(2)^4
________________________________________________________________________________________
maple [B] time = 0.44, size = 346, normalized size = 15.73
|
|
|
method |
result |
size |
|
|
|
default |
|
|
risch |
|
|
|
|
|
|
|
|
|
|
|
|
Verification of antiderivative is not currently implemented for this CAS.
[In]
int((ln(exp(x)^2*exp(ln(x)^2-5)^2)^2+(8*ln(x)+4*x)*ln(exp(x)^2*exp(ln(x)^2-5)^2))/ln(2)^4,x,method=_RETURNVERB
OSE)
[Out]
1/ln(2)^4*(100*x+8*x^2*ln(x)^2-4/3*x^3-40*x^2+4*x*ln(x)^4-40*x*ln(x)^2+4*x^2*ln(exp(x))+(ln(exp(x)^2*exp(ln(x)
^2-5)^2)-2*ln(exp(x))-2*ln(exp(ln(x)^2-5)))^2*x-40*(ln(exp(x))-x)*x+8*(ln(exp(ln(x)^2-5))-ln(x)^2+5)*x^2+4*(ln
(exp(x)^2*exp(ln(x)^2-5)^2)-2*ln(exp(x))-2*ln(exp(ln(x)^2-5)))*x^2-40*(ln(exp(ln(x)^2-5))-ln(x)^2+5)*x+4*(ln(e
xp(ln(x)^2-5))-ln(x)^2+5)^2*x+4/3*ln(exp(x))^3+8*ln(x)^2*x*(ln(exp(x))-x)+8*(ln(exp(ln(x)^2-5))-ln(x)^2+5)*(ln
(exp(x))-x)*x+4*(ln(exp(x)^2*exp(ln(x)^2-5)^2)-2*ln(exp(x))-2*ln(exp(ln(x)^2-5)))*(ln(exp(x))-x)*x+8*ln(x)^2*x
*(ln(exp(ln(x)^2-5))-ln(x)^2+5)+4*ln(exp(ln(x)^2-5))*x*(ln(exp(x)^2*exp(ln(x)^2-5)^2)-2*ln(exp(x))-2*ln(exp(ln
(x)^2-5))))
________________________________________________________________________________________
maxima [A] time = 0.35, size = 21, normalized size = 0.95
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate((log(exp(x)^2*exp(log(x)^2-5)^2)^2+(8*log(x)+4*x)*log(exp(x)^2*exp(log(x)^2-5)^2))/log(2)^4,x, algor
ithm="maxima")
[Out]
x*log(e^(2*log(x)^2 + 2*x - 10))^2/log(2)^4
________________________________________________________________________________________
mupad [B] time = 3.63, size = 74, normalized size = 3.36
Verification of antiderivative is not currently implemented for this CAS.
[In]
int((log(exp(2*x)*exp(2*log(x)^2 - 10))*(4*x + 8*log(x)) + log(exp(2*x)*exp(2*log(x)^2 - 10))^2)/log(2)^4,x)
[Out]
(4*x^3)/log(2)^4 - (40*x^2)/log(2)^4 + (100*x)/log(2)^4 - (20*x*log(exp(2*log(x)^2)))/log(2)^4 + (x*log(exp(2*
log(x)^2))^2)/log(2)^4 + (4*x^2*log(exp(2*log(x)^2)))/log(2)^4
________________________________________________________________________________________
sympy [B] time = 0.42, size = 60, normalized size = 2.73
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate((ln(exp(x)**2*exp(ln(x)**2-5)**2)**2+(8*ln(x)+4*x)*ln(exp(x)**2*exp(ln(x)**2-5)**2))/ln(2)**4,x)
[Out]
4*x**3/log(2)**4 - 40*x**2/log(2)**4 + 4*x*log(x)**4/log(2)**4 + 100*x/log(2)**4 + (8*x**2 - 40*x)*log(x)**2/l
og(2)**4
________________________________________________________________________________________