Optimal. Leaf size=22 \[ \frac {x \log ^2\left (e^{-10+2 x+2 \log ^2(x)}\right )}{\log ^4(2)} \]
________________________________________________________________________________________
Rubi [F] time = 0.22, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {\log ^2\left (e^{-10+2 x+2 \log ^2(x)}\right )+\log \left (e^{-10+2 x+2 \log ^2(x)}\right ) (4 x+8 \log (x))}{\log ^4(2)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {\int \left (\log ^2\left (e^{-10+2 x+2 \log ^2(x)}\right )+\log \left (e^{-10+2 x+2 \log ^2(x)}\right ) (4 x+8 \log (x))\right ) \, dx}{\log ^4(2)}\\ &=\frac {\int \log ^2\left (e^{-10+2 x+2 \log ^2(x)}\right ) \, dx}{\log ^4(2)}+\frac {\int \log \left (e^{-10+2 x+2 \log ^2(x)}\right ) (4 x+8 \log (x)) \, dx}{\log ^4(2)}\\ &=\frac {\int \log ^2\left (e^{2 \left (-5+x+\log ^2(x)\right )}\right ) \, dx}{\log ^4(2)}+\frac {\int 4 \log \left (e^{2 \left (-5+x+\log ^2(x)\right )}\right ) (x+2 \log (x)) \, dx}{\log ^4(2)}\\ &=\frac {\int \log ^2\left (e^{2 \left (-5+x+\log ^2(x)\right )}\right ) \, dx}{\log ^4(2)}+\frac {4 \int \log \left (e^{2 \left (-5+x+\log ^2(x)\right )}\right ) (x+2 \log (x)) \, dx}{\log ^4(2)}\\ &=\frac {\int \log ^2\left (e^{2 \left (-5+x+\log ^2(x)\right )}\right ) \, dx}{\log ^4(2)}+\frac {4 \int \left (x \log \left (e^{2 \left (-5+x+\log ^2(x)\right )}\right )+2 \log \left (e^{2 \left (-5+x+\log ^2(x)\right )}\right ) \log (x)\right ) \, dx}{\log ^4(2)}\\ &=\frac {\int \log ^2\left (e^{2 \left (-5+x+\log ^2(x)\right )}\right ) \, dx}{\log ^4(2)}+\frac {4 \int x \log \left (e^{2 \left (-5+x+\log ^2(x)\right )}\right ) \, dx}{\log ^4(2)}+\frac {8 \int \log \left (e^{2 \left (-5+x+\log ^2(x)\right )}\right ) \log (x) \, dx}{\log ^4(2)}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.08, size = 20, normalized size = 0.91 \begin {gather*} \frac {x \log ^2\left (e^{2 \left (-5+x+\log ^2(x)\right )}\right )}{\log ^4(2)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.93, size = 37, normalized size = 1.68 \begin {gather*} \frac {4 \, {\left (x \log \relax (x)^{4} + x^{3} + 2 \, {\left (x^{2} - 5 \, x\right )} \log \relax (x)^{2} - 10 \, x^{2} + 25 \, x\right )}}{\log \relax (2)^{4}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.23, size = 40, normalized size = 1.82 \begin {gather*} \frac {4 \, {\left (x \log \relax (x)^{4} + 2 \, x^{2} \log \relax (x)^{2} + x^{3} - 10 \, x \log \relax (x)^{2} - 10 \, x^{2} + 25 \, x\right )}}{\log \relax (2)^{4}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [B] time = 0.44, size = 346, normalized size = 15.73
method | result | size |
default | \(\frac {100 x +8 x^{2} \ln \relax (x )^{2}-\frac {4 x^{3}}{3}-40 x^{2}+4 x \ln \relax (x )^{4}-40 x \ln \relax (x )^{2}+4 x^{2} \ln \left ({\mathrm e}^{x}\right )+\left (\ln \left ({\mathrm e}^{2 x} {\mathrm e}^{2 \ln \relax (x )^{2}-10}\right )-2 \ln \left ({\mathrm e}^{x}\right )-2 \ln \left ({\mathrm e}^{\ln \relax (x )^{2}-5}\right )\right )^{2} x -40 \left (\ln \left ({\mathrm e}^{x}\right )-x \right ) x +8 \left (\ln \left ({\mathrm e}^{\ln \relax (x )^{2}-5}\right )-\ln \relax (x )^{2}+5\right ) x^{2}+4 \left (\ln \left ({\mathrm e}^{2 x} {\mathrm e}^{2 \ln \relax (x )^{2}-10}\right )-2 \ln \left ({\mathrm e}^{x}\right )-2 \ln \left ({\mathrm e}^{\ln \relax (x )^{2}-5}\right )\right ) x^{2}-40 \left (\ln \left ({\mathrm e}^{\ln \relax (x )^{2}-5}\right )-\ln \relax (x )^{2}+5\right ) x +4 \left (\ln \left ({\mathrm e}^{\ln \relax (x )^{2}-5}\right )-\ln \relax (x )^{2}+5\right )^{2} x +\frac {4 \ln \left ({\mathrm e}^{x}\right )^{3}}{3}+8 \ln \relax (x )^{2} x \left (\ln \left ({\mathrm e}^{x}\right )-x \right )+8 \left (\ln \left ({\mathrm e}^{\ln \relax (x )^{2}-5}\right )-\ln \relax (x )^{2}+5\right ) \left (\ln \left ({\mathrm e}^{x}\right )-x \right ) x +4 \left (\ln \left ({\mathrm e}^{2 x} {\mathrm e}^{2 \ln \relax (x )^{2}-10}\right )-2 \ln \left ({\mathrm e}^{x}\right )-2 \ln \left ({\mathrm e}^{\ln \relax (x )^{2}-5}\right )\right ) \left (\ln \left ({\mathrm e}^{x}\right )-x \right ) x +8 \ln \relax (x )^{2} x \left (\ln \left ({\mathrm e}^{\ln \relax (x )^{2}-5}\right )-\ln \relax (x )^{2}+5\right )+4 \ln \left ({\mathrm e}^{\ln \relax (x )^{2}-5}\right ) x \left (\ln \left ({\mathrm e}^{2 x} {\mathrm e}^{2 \ln \relax (x )^{2}-10}\right )-2 \ln \left ({\mathrm e}^{x}\right )-2 \ln \left ({\mathrm e}^{\ln \relax (x )^{2}-5}\right )\right )}{\ln \relax (2)^{4}}\) | \(346\) |
risch | \(\text {Expression too large to display}\) | \(2993\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.35, size = 21, normalized size = 0.95 \begin {gather*} \frac {x \log \left (e^{\left (2 \, \log \relax (x)^{2} + 2 \, x - 10\right )}\right )^{2}}{\log \relax (2)^{4}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.63, size = 74, normalized size = 3.36 \begin {gather*} \frac {4\,x^3}{{\ln \relax (2)}^4}+\frac {4\,x^2\,\ln \left ({\mathrm {e}}^{2\,{\ln \relax (x)}^2}\right )}{{\ln \relax (2)}^4}-\frac {40\,x^2}{{\ln \relax (2)}^4}+\frac {x\,{\ln \left ({\mathrm {e}}^{2\,{\ln \relax (x)}^2}\right )}^2}{{\ln \relax (2)}^4}-\frac {20\,x\,\ln \left ({\mathrm {e}}^{2\,{\ln \relax (x)}^2}\right )}{{\ln \relax (2)}^4}+\frac {100\,x}{{\ln \relax (2)}^4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.42, size = 60, normalized size = 2.73 \begin {gather*} \frac {4 x^{3}}{\log {\relax (2 )}^{4}} - \frac {40 x^{2}}{\log {\relax (2 )}^{4}} + \frac {4 x \log {\relax (x )}^{4}}{\log {\relax (2 )}^{4}} + \frac {100 x}{\log {\relax (2 )}^{4}} + \frac {\left (8 x^{2} - 40 x\right ) \log {\relax (x )}^{2}}{\log {\relax (2 )}^{4}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________