3.41.25 log2(e10+2x+2log2(x))+log(e10+2x+2log2(x))(4x+8log(x))log4(2)dx

Optimal. Leaf size=22 xlog2(e10+2x+2log2(x))log4(2)

________________________________________________________________________________________

Rubi [F]  time = 0.22, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, number of rulesintegrand size = 0.000, Rules used = {} log2(e10+2x+2log2(x))+log(e10+2x+2log2(x))(4x+8log(x))log4(2)dx

Verification is not applicable to the result.

[In]

Int[(Log[E^(-10 + 2*x + 2*Log[x]^2)]^2 + Log[E^(-10 + 2*x + 2*Log[x]^2)]*(4*x + 8*Log[x]))/Log[2]^4,x]

[Out]

(4*Defer[Int][x*Log[E^(2*(-5 + x + Log[x]^2))], x])/Log[2]^4 + Defer[Int][Log[E^(2*(-5 + x + Log[x]^2))]^2, x]
/Log[2]^4 + (8*Defer[Int][Log[E^(2*(-5 + x + Log[x]^2))]*Log[x], x])/Log[2]^4

Rubi steps

integral=(log2(e10+2x+2log2(x))+log(e10+2x+2log2(x))(4x+8log(x)))dxlog4(2)=log2(e10+2x+2log2(x))dxlog4(2)+log(e10+2x+2log2(x))(4x+8log(x))dxlog4(2)=log2(e2(5+x+log2(x)))dxlog4(2)+4log(e2(5+x+log2(x)))(x+2log(x))dxlog4(2)=log2(e2(5+x+log2(x)))dxlog4(2)+4log(e2(5+x+log2(x)))(x+2log(x))dxlog4(2)=log2(e2(5+x+log2(x)))dxlog4(2)+4(xlog(e2(5+x+log2(x)))+2log(e2(5+x+log2(x)))log(x))dxlog4(2)=log2(e2(5+x+log2(x)))dxlog4(2)+4xlog(e2(5+x+log2(x)))dxlog4(2)+8log(e2(5+x+log2(x)))log(x)dxlog4(2)

________________________________________________________________________________________

Mathematica [A]  time = 0.08, size = 20, normalized size = 0.91 xlog2(e2(5+x+log2(x)))log4(2)

Antiderivative was successfully verified.

[In]

Integrate[(Log[E^(-10 + 2*x + 2*Log[x]^2)]^2 + Log[E^(-10 + 2*x + 2*Log[x]^2)]*(4*x + 8*Log[x]))/Log[2]^4,x]

[Out]

(x*Log[E^(2*(-5 + x + Log[x]^2))]^2)/Log[2]^4

________________________________________________________________________________________

fricas [A]  time = 0.93, size = 37, normalized size = 1.68 4(xlog(x)4+x3+2(x25x)log(x)210x2+25x)log(2)4

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((log(exp(x)^2*exp(log(x)^2-5)^2)^2+(8*log(x)+4*x)*log(exp(x)^2*exp(log(x)^2-5)^2))/log(2)^4,x, algor
ithm="fricas")

[Out]

4*(x*log(x)^4 + x^3 + 2*(x^2 - 5*x)*log(x)^2 - 10*x^2 + 25*x)/log(2)^4

________________________________________________________________________________________

giac [A]  time = 0.23, size = 40, normalized size = 1.82 4(xlog(x)4+2x2log(x)2+x310xlog(x)210x2+25x)log(2)4

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((log(exp(x)^2*exp(log(x)^2-5)^2)^2+(8*log(x)+4*x)*log(exp(x)^2*exp(log(x)^2-5)^2))/log(2)^4,x, algor
ithm="giac")

[Out]

4*(x*log(x)^4 + 2*x^2*log(x)^2 + x^3 - 10*x*log(x)^2 - 10*x^2 + 25*x)/log(2)^4

________________________________________________________________________________________

maple [B]  time = 0.44, size = 346, normalized size = 15.73




method result size



default 100x+8x2ln(x)24x3340x2+4xln(x)440xln(x)2+4x2ln(ex)+(ln(e2xe2ln(x)210)2ln(ex)2ln(eln(x)25))2x40(ln(ex)x)x+8(ln(eln(x)25)ln(x)2+5)x2+4(ln(e2xe2ln(x)210)2ln(ex)2ln(eln(x)25))x240(ln(eln(x)25)ln(x)2+5)x+4(ln(eln(x)25)ln(x)2+5)2x+4ln(ex)33+8ln(x)2x(ln(ex)x)+8(ln(eln(x)25)ln(x)2+5)(ln(ex)x)x+4(ln(e2xe2ln(x)210)2ln(ex)2ln(eln(x)25))(ln(ex)x)x+8ln(x)2x(ln(eln(x)25)ln(x)2+5)+4ln(eln(x)25)x(ln(e2xe2ln(x)210)2ln(ex)2ln(eln(x)25))ln(2)4 346
risch Expression too large to display 2993



Verification of antiderivative is not currently implemented for this CAS.

[In]

int((ln(exp(x)^2*exp(ln(x)^2-5)^2)^2+(8*ln(x)+4*x)*ln(exp(x)^2*exp(ln(x)^2-5)^2))/ln(2)^4,x,method=_RETURNVERB
OSE)

[Out]

1/ln(2)^4*(100*x+8*x^2*ln(x)^2-4/3*x^3-40*x^2+4*x*ln(x)^4-40*x*ln(x)^2+4*x^2*ln(exp(x))+(ln(exp(x)^2*exp(ln(x)
^2-5)^2)-2*ln(exp(x))-2*ln(exp(ln(x)^2-5)))^2*x-40*(ln(exp(x))-x)*x+8*(ln(exp(ln(x)^2-5))-ln(x)^2+5)*x^2+4*(ln
(exp(x)^2*exp(ln(x)^2-5)^2)-2*ln(exp(x))-2*ln(exp(ln(x)^2-5)))*x^2-40*(ln(exp(ln(x)^2-5))-ln(x)^2+5)*x+4*(ln(e
xp(ln(x)^2-5))-ln(x)^2+5)^2*x+4/3*ln(exp(x))^3+8*ln(x)^2*x*(ln(exp(x))-x)+8*(ln(exp(ln(x)^2-5))-ln(x)^2+5)*(ln
(exp(x))-x)*x+4*(ln(exp(x)^2*exp(ln(x)^2-5)^2)-2*ln(exp(x))-2*ln(exp(ln(x)^2-5)))*(ln(exp(x))-x)*x+8*ln(x)^2*x
*(ln(exp(ln(x)^2-5))-ln(x)^2+5)+4*ln(exp(ln(x)^2-5))*x*(ln(exp(x)^2*exp(ln(x)^2-5)^2)-2*ln(exp(x))-2*ln(exp(ln
(x)^2-5))))

________________________________________________________________________________________

maxima [A]  time = 0.35, size = 21, normalized size = 0.95 xlog(e(2log(x)2+2x10))2log(2)4

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((log(exp(x)^2*exp(log(x)^2-5)^2)^2+(8*log(x)+4*x)*log(exp(x)^2*exp(log(x)^2-5)^2))/log(2)^4,x, algor
ithm="maxima")

[Out]

x*log(e^(2*log(x)^2 + 2*x - 10))^2/log(2)^4

________________________________________________________________________________________

mupad [B]  time = 3.63, size = 74, normalized size = 3.36 4x3ln(2)4+4x2ln(e2ln(x)2)ln(2)440x2ln(2)4+xln(e2ln(x)2)2ln(2)420xln(e2ln(x)2)ln(2)4+100xln(2)4

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((log(exp(2*x)*exp(2*log(x)^2 - 10))*(4*x + 8*log(x)) + log(exp(2*x)*exp(2*log(x)^2 - 10))^2)/log(2)^4,x)

[Out]

(4*x^3)/log(2)^4 - (40*x^2)/log(2)^4 + (100*x)/log(2)^4 - (20*x*log(exp(2*log(x)^2)))/log(2)^4 + (x*log(exp(2*
log(x)^2))^2)/log(2)^4 + (4*x^2*log(exp(2*log(x)^2)))/log(2)^4

________________________________________________________________________________________

sympy [B]  time = 0.42, size = 60, normalized size = 2.73 4x3log(2)440x2log(2)4+4xlog(x)4log(2)4+100xlog(2)4+(8x240x)log(x)2log(2)4

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((ln(exp(x)**2*exp(ln(x)**2-5)**2)**2+(8*ln(x)+4*x)*ln(exp(x)**2*exp(ln(x)**2-5)**2))/ln(2)**4,x)

[Out]

4*x**3/log(2)**4 - 40*x**2/log(2)**4 + 4*x*log(x)**4/log(2)**4 + 100*x/log(2)**4 + (8*x**2 - 40*x)*log(x)**2/l
og(2)**4

________________________________________________________________________________________