Optimal. Leaf size=27 \[ \log \left (x \left (e^x x-\frac {2 \left (-x+\log \left (\frac {x}{3 e^5}\right )\right )}{x}\right )\right ) \]
________________________________________________________________________________________
Rubi [F] time = 1.57, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {2-2 x+e^x \left (-2 x^2-x^3\right )}{-2 x^2-e^x x^3+2 x \log \left (\frac {x}{3 e^5}\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (\frac {2+x}{x}+\frac {2 \left (-6 x-x^2-11 \left (1+\frac {2 \log (3)}{11}\right )+x \log \left (\frac {x}{3}\right )+2 \log (x)\right )}{x \left (2 x+e^x x^2+10 \left (1+\frac {\log (3)}{5}\right )-2 \log (x)\right )}\right ) \, dx\\ &=2 \int \frac {-6 x-x^2-11 \left (1+\frac {2 \log (3)}{11}\right )+x \log \left (\frac {x}{3}\right )+2 \log (x)}{x \left (2 x+e^x x^2+10 \left (1+\frac {\log (3)}{5}\right )-2 \log (x)\right )} \, dx+\int \frac {2+x}{x} \, dx\\ &=2 \int \left (\frac {-11-\log (9)}{x \left (2 x+e^x x^2+10 \left (1+\frac {\log (3)}{5}\right )-2 \log (x)\right )}+\frac {\log \left (\frac {x}{3}\right )}{2 x+e^x x^2+10 \left (1+\frac {\log (3)}{5}\right )-2 \log (x)}+\frac {2 \log (x)}{x \left (2 x+e^x x^2+10 \left (1+\frac {\log (3)}{5}\right )-2 \log (x)\right )}+\frac {6}{-2 x-e^x x^2-10 \left (1+\frac {\log (3)}{5}\right )+2 \log (x)}+\frac {x}{-2 x-e^x x^2-10 \left (1+\frac {\log (3)}{5}\right )+2 \log (x)}\right ) \, dx+\int \left (1+\frac {2}{x}\right ) \, dx\\ &=x+2 \log (x)+2 \int \frac {\log \left (\frac {x}{3}\right )}{2 x+e^x x^2+10 \left (1+\frac {\log (3)}{5}\right )-2 \log (x)} \, dx+2 \int \frac {x}{-2 x-e^x x^2-10 \left (1+\frac {\log (3)}{5}\right )+2 \log (x)} \, dx+4 \int \frac {\log (x)}{x \left (2 x+e^x x^2+10 \left (1+\frac {\log (3)}{5}\right )-2 \log (x)\right )} \, dx+12 \int \frac {1}{-2 x-e^x x^2-10 \left (1+\frac {\log (3)}{5}\right )+2 \log (x)} \, dx-(2 (11+\log (9))) \int \frac {1}{x \left (2 x+e^x x^2+10 \left (1+\frac {\log (3)}{5}\right )-2 \log (x)\right )} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.43, size = 19, normalized size = 0.70 \begin {gather*} \log \left (10+2 x+e^x x^2+\log (9)-2 \log (x)\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.57, size = 20, normalized size = 0.74 \begin {gather*} \log \left (-x^{2} e^{x} - 2 \, x + 2 \, \log \left (\frac {1}{3} \, x e^{\left (-5\right )}\right )\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.17, size = 19, normalized size = 0.70 \begin {gather*} \log \left (-x^{2} e^{x} - 2 \, x + 2 \, \log \left (\frac {1}{3} \, x\right ) - 10\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.04, size = 19, normalized size = 0.70
method | result | size |
risch | \(\ln \left (-\frac {{\mathrm e}^{x} x^{2}}{2}-x +\ln \left (\frac {x \,{\mathrm e}^{-5}}{3}\right )\right )\) | \(19\) |
norman | \(\ln \left ({\mathrm e}^{x} x^{2}-2 \ln \left (\frac {x \,{\mathrm e}^{-5}}{3}\right )+2 x \right )\) | \(22\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.48, size = 29, normalized size = 1.07 \begin {gather*} 2 \, \log \relax (x) + \log \left (\frac {x^{2} e^{x} + 2 \, x + 2 \, \log \relax (3) - 2 \, \log \relax (x) + 10}{x^{2}}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.04 \begin {gather*} \int \frac {2\,x+{\mathrm {e}}^x\,\left (x^3+2\,x^2\right )-2}{x^3\,{\mathrm {e}}^x-2\,x\,\ln \left (\frac {x\,{\mathrm {e}}^{-5}}{3}\right )+2\,x^2} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.36, size = 26, normalized size = 0.96 \begin {gather*} 2 \log {\relax (x )} + \log {\left (e^{x} + \frac {2 x - 2 \log {\left (\frac {x}{3 e^{5}} \right )}}{x^{2}} \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________