3.41.30 22x+ex(2x2x3)2x2exx3+2xlog(x3e5)dx

Optimal. Leaf size=27 log(x(exx2(x+log(x3e5))x))

________________________________________________________________________________________

Rubi [F]  time = 1.57, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, number of rulesintegrand size = 0.000, Rules used = {} 22x+ex(2x2x3)2x2exx3+2xlog(x3e5)dx

Verification is not applicable to the result.

[In]

Int[(2 - 2*x + E^x*(-2*x^2 - x^3))/(-2*x^2 - E^x*x^3 + 2*x*Log[x/(3*E^5)]),x]

[Out]

x + 2*Log[x] - 2*(11 + Log[9])*Defer[Int][1/(x*(2*x + E^x*x^2 + 10*(1 + Log[3]/5) - 2*Log[x])), x] + 2*Defer[I
nt][Log[x/3]/(2*x + E^x*x^2 + 10*(1 + Log[3]/5) - 2*Log[x]), x] + 4*Defer[Int][Log[x]/(x*(2*x + E^x*x^2 + 10*(
1 + Log[3]/5) - 2*Log[x])), x] + 12*Defer[Int][(-2*x - E^x*x^2 - 10*(1 + Log[3]/5) + 2*Log[x])^(-1), x] + 2*De
fer[Int][x/(-2*x - E^x*x^2 - 10*(1 + Log[3]/5) + 2*Log[x]), x]

Rubi steps

integral=(2+xx+2(6xx211(1+2log(3)11)+xlog(x3)+2log(x))x(2x+exx2+10(1+log(3)5)2log(x)))dx=26xx211(1+2log(3)11)+xlog(x3)+2log(x)x(2x+exx2+10(1+log(3)5)2log(x))dx+2+xxdx=2(11log(9)x(2x+exx2+10(1+log(3)5)2log(x))+log(x3)2x+exx2+10(1+log(3)5)2log(x)+2log(x)x(2x+exx2+10(1+log(3)5)2log(x))+62xexx210(1+log(3)5)+2log(x)+x2xexx210(1+log(3)5)+2log(x))dx+(1+2x)dx=x+2log(x)+2log(x3)2x+exx2+10(1+log(3)5)2log(x)dx+2x2xexx210(1+log(3)5)+2log(x)dx+4log(x)x(2x+exx2+10(1+log(3)5)2log(x))dx+1212xexx210(1+log(3)5)+2log(x)dx(2(11+log(9)))1x(2x+exx2+10(1+log(3)5)2log(x))dx

________________________________________________________________________________________

Mathematica [A]  time = 0.43, size = 19, normalized size = 0.70 log(10+2x+exx2+log(9)2log(x))

Antiderivative was successfully verified.

[In]

Integrate[(2 - 2*x + E^x*(-2*x^2 - x^3))/(-2*x^2 - E^x*x^3 + 2*x*Log[x/(3*E^5)]),x]

[Out]

Log[10 + 2*x + E^x*x^2 + Log[9] - 2*Log[x]]

________________________________________________________________________________________

fricas [A]  time = 0.57, size = 20, normalized size = 0.74 log(x2ex2x+2log(13xe(5)))

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((-x^3-2*x^2)*exp(x)-2*x+2)/(2*x*log(1/3*x/exp(5))-exp(x)*x^3-2*x^2),x, algorithm="fricas")

[Out]

log(-x^2*e^x - 2*x + 2*log(1/3*x*e^(-5)))

________________________________________________________________________________________

giac [A]  time = 0.17, size = 19, normalized size = 0.70 log(x2ex2x+2log(13x)10)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((-x^3-2*x^2)*exp(x)-2*x+2)/(2*x*log(1/3*x/exp(5))-exp(x)*x^3-2*x^2),x, algorithm="giac")

[Out]

log(-x^2*e^x - 2*x + 2*log(1/3*x) - 10)

________________________________________________________________________________________

maple [A]  time = 0.04, size = 19, normalized size = 0.70




method result size



risch ln(exx22x+ln(xe53)) 19
norman ln(exx22ln(xe53)+2x) 22



Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((-x^3-2*x^2)*exp(x)-2*x+2)/(2*x*ln(1/3*x/exp(5))-exp(x)*x^3-2*x^2),x,method=_RETURNVERBOSE)

[Out]

ln(-1/2*exp(x)*x^2-x+ln(1/3*x*exp(-5)))

________________________________________________________________________________________

maxima [A]  time = 0.48, size = 29, normalized size = 1.07 2log(x)+log(x2ex+2x+2log(3)2log(x)+10x2)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((-x^3-2*x^2)*exp(x)-2*x+2)/(2*x*log(1/3*x/exp(5))-exp(x)*x^3-2*x^2),x, algorithm="maxima")

[Out]

2*log(x) + log((x^2*e^x + 2*x + 2*log(3) - 2*log(x) + 10)/x^2)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.04 2x+ex(x3+2x2)2x3ex2xln(xe53)+2x2dx

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((2*x + exp(x)*(2*x^2 + x^3) - 2)/(x^3*exp(x) - 2*x*log((x*exp(-5))/3) + 2*x^2),x)

[Out]

int((2*x + exp(x)*(2*x^2 + x^3) - 2)/(x^3*exp(x) - 2*x*log((x*exp(-5))/3) + 2*x^2), x)

________________________________________________________________________________________

sympy [A]  time = 0.36, size = 26, normalized size = 0.96 2log(x)+log(ex+2x2log(x3e5)x2)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((-x**3-2*x**2)*exp(x)-2*x+2)/(2*x*ln(1/3*x/exp(5))-exp(x)*x**3-2*x**2),x)

[Out]

2*log(x) + log(exp(x) + (2*x - 2*log(x*exp(-5)/3))/x**2)

________________________________________________________________________________________