3.41.32 1600x4+1250x5+300x6+25x7+e625x3(1152864x216x218x3)1600x4+1200x5+300x6+25x7dx

Optimal. Leaf size=24 1+e625x3+x+x24(4+x)2

________________________________________________________________________________________

Rubi [A]  time = 0.16, antiderivative size = 25, normalized size of antiderivative = 1.04, number of steps used = 5, number of rules used = 3, integrand size = 70, number of rulesintegrand size = 0.043, Rules used = {6688, 2209, 1850} e625x3+x2x+4+4(x+4)2

Antiderivative was successfully verified.

[In]

Int[(1600*x^4 + 1250*x^5 + 300*x^6 + 25*x^7 + E^(6/(25*x^3))*(-1152 - 864*x - 216*x^2 - 18*x^3))/(1600*x^4 + 1
200*x^5 + 300*x^6 + 25*x^7),x]

[Out]

E^(6/(25*x^3)) + x + 4/(4 + x)^2 - 2/(4 + x)

Rule 1850

Int[(Pq_)*((a_) + (b_.)*(x_)^(n_.))^(p_.), x_Symbol] :> Int[ExpandIntegrand[Pq*(a + b*x^n)^p, x], x] /; FreeQ[
{a, b, n}, x] && PolyQ[Pq, x] && (IGtQ[p, 0] || EqQ[n, 1])

Rule 2209

Int[(F_)^((a_.) + (b_.)*((c_.) + (d_.)*(x_))^(n_))*((e_.) + (f_.)*(x_))^(m_.), x_Symbol] :> Simp[((e + f*x)^n*
F^(a + b*(c + d*x)^n))/(b*f*n*(c + d*x)^n*Log[F]), x] /; FreeQ[{F, a, b, c, d, e, f, n}, x] && EqQ[m, n - 1] &
& EqQ[d*e - c*f, 0]

Rule 6688

Int[u_, x_Symbol] :> With[{v = SimplifyIntegrand[u, x]}, Int[v, x] /; SimplerIntegrandQ[v, u, x]]

Rubi steps

integral=(18e625x325x4+64+50x+12x2+x3(4+x)3)dx=(1825e625x3x4dx)+64+50x+12x2+x3(4+x)3dx=e625x3+(18(4+x)3+2(4+x)2)dx=e625x3+x+4(4+x)224+x

________________________________________________________________________________________

Mathematica [A]  time = 0.03, size = 25, normalized size = 1.04 e625x3+x+4(4+x)224+x

Antiderivative was successfully verified.

[In]

Integrate[(1600*x^4 + 1250*x^5 + 300*x^6 + 25*x^7 + E^(6/(25*x^3))*(-1152 - 864*x - 216*x^2 - 18*x^3))/(1600*x
^4 + 1200*x^5 + 300*x^6 + 25*x^7),x]

[Out]

E^(6/(25*x^3)) + x + 4/(4 + x)^2 - 2/(4 + x)

________________________________________________________________________________________

fricas [B]  time = 0.67, size = 39, normalized size = 1.62 x3+8x2+(x2+8x+16)e(625x3)+14x4x2+8x+16

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((-18*x^3-216*x^2-864*x-1152)*exp(6/25/x^3)+25*x^7+300*x^6+1250*x^5+1600*x^4)/(25*x^7+300*x^6+1200*x
^5+1600*x^4),x, algorithm="fricas")

[Out]

(x^3 + 8*x^2 + (x^2 + 8*x + 16)*e^(6/25/x^3) + 14*x - 4)/(x^2 + 8*x + 16)

________________________________________________________________________________________

giac [A]  time = 0.15, size = 23, normalized size = 0.96 x2(x+2)x2+8x+16+e(625x3)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((-18*x^3-216*x^2-864*x-1152)*exp(6/25/x^3)+25*x^7+300*x^6+1250*x^5+1600*x^4)/(25*x^7+300*x^6+1200*x
^5+1600*x^4),x, algorithm="giac")

[Out]

x - 2*(x + 2)/(x^2 + 8*x + 16) + e^(6/25/x^3)

________________________________________________________________________________________

maple [A]  time = 0.29, size = 25, normalized size = 1.04




method result size



risch x+2x4x2+8x+16+e625x3 25
norman x6132x350x4+e625x3x5+16e625x3x3+8e625x3x4x3(4+x)2 56



Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((-18*x^3-216*x^2-864*x-1152)*exp(6/25/x^3)+25*x^7+300*x^6+1250*x^5+1600*x^4)/(25*x^7+300*x^6+1200*x^5+160
0*x^4),x,method=_RETURNVERBOSE)

[Out]

x+(-2*x-4)/(x^2+8*x+16)+exp(6/25/x^3)

________________________________________________________________________________________

maxima [B]  time = 0.40, size = 67, normalized size = 2.79 x16(3x+10)x2+8x+16+96(x+3)x2+8x+1650(x+2)x2+8x+1632x2+8x+16+e(625x3)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((-18*x^3-216*x^2-864*x-1152)*exp(6/25/x^3)+25*x^7+300*x^6+1250*x^5+1600*x^4)/(25*x^7+300*x^6+1200*x
^5+1600*x^4),x, algorithm="maxima")

[Out]

x - 16*(3*x + 10)/(x^2 + 8*x + 16) + 96*(x + 3)/(x^2 + 8*x + 16) - 50*(x + 2)/(x^2 + 8*x + 16) - 32/(x^2 + 8*x
 + 16) + e^(6/25/x^3)

________________________________________________________________________________________

mupad [B]  time = 3.08, size = 20, normalized size = 0.83 x+e625x32x+4(x+4)2

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((1600*x^4 - exp(6/(25*x^3))*(864*x + 216*x^2 + 18*x^3 + 1152) + 1250*x^5 + 300*x^6 + 25*x^7)/(1600*x^4 + 1
200*x^5 + 300*x^6 + 25*x^7),x)

[Out]

x + exp(6/(25*x^3)) - (2*x + 4)/(x + 4)^2

________________________________________________________________________________________

sympy [A]  time = 0.19, size = 24, normalized size = 1.00 x+2x4x2+8x+16+e625x3

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((-18*x**3-216*x**2-864*x-1152)*exp(6/25/x**3)+25*x**7+300*x**6+1250*x**5+1600*x**4)/(25*x**7+300*x*
*6+1200*x**5+1600*x**4),x)

[Out]

x + (-2*x - 4)/(x**2 + 8*x + 16) + exp(6/(25*x**3))

________________________________________________________________________________________