Optimal. Leaf size=24 \[ 1+e^{\frac {6}{25 x^3}}+x+\frac {x^2}{4 (4+x)^2} \]
________________________________________________________________________________________
Rubi [A] time = 0.16, antiderivative size = 25, normalized size of antiderivative = 1.04, number of steps used = 5, number of rules used = 3, integrand size = 70, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.043, Rules used = {6688, 2209, 1850} \begin {gather*} e^{\frac {6}{25 x^3}}+x-\frac {2}{x+4}+\frac {4}{(x+4)^2} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 1850
Rule 2209
Rule 6688
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (-\frac {18 e^{\frac {6}{25 x^3}}}{25 x^4}+\frac {64+50 x+12 x^2+x^3}{(4+x)^3}\right ) \, dx\\ &=-\left (\frac {18}{25} \int \frac {e^{\frac {6}{25 x^3}}}{x^4} \, dx\right )+\int \frac {64+50 x+12 x^2+x^3}{(4+x)^3} \, dx\\ &=e^{\frac {6}{25 x^3}}+\int \left (1-\frac {8}{(4+x)^3}+\frac {2}{(4+x)^2}\right ) \, dx\\ &=e^{\frac {6}{25 x^3}}+x+\frac {4}{(4+x)^2}-\frac {2}{4+x}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.03, size = 25, normalized size = 1.04 \begin {gather*} e^{\frac {6}{25 x^3}}+x+\frac {4}{(4+x)^2}-\frac {2}{4+x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.67, size = 39, normalized size = 1.62 \begin {gather*} \frac {x^{3} + 8 \, x^{2} + {\left (x^{2} + 8 \, x + 16\right )} e^{\left (\frac {6}{25 \, x^{3}}\right )} + 14 \, x - 4}{x^{2} + 8 \, x + 16} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.15, size = 23, normalized size = 0.96 \begin {gather*} x - \frac {2 \, {\left (x + 2\right )}}{x^{2} + 8 \, x + 16} + e^{\left (\frac {6}{25 \, x^{3}}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.29, size = 25, normalized size = 1.04
method | result | size |
risch | \(x +\frac {-2 x -4}{x^{2}+8 x +16}+{\mathrm e}^{\frac {6}{25 x^{3}}}\) | \(25\) |
norman | \(\frac {x^{6}-132 x^{3}-50 x^{4}+{\mathrm e}^{\frac {6}{25 x^{3}}} x^{5}+16 \,{\mathrm e}^{\frac {6}{25 x^{3}}} x^{3}+8 \,{\mathrm e}^{\frac {6}{25 x^{3}}} x^{4}}{x^{3} \left (4+x \right )^{2}}\) | \(56\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.40, size = 67, normalized size = 2.79 \begin {gather*} x - \frac {16 \, {\left (3 \, x + 10\right )}}{x^{2} + 8 \, x + 16} + \frac {96 \, {\left (x + 3\right )}}{x^{2} + 8 \, x + 16} - \frac {50 \, {\left (x + 2\right )}}{x^{2} + 8 \, x + 16} - \frac {32}{x^{2} + 8 \, x + 16} + e^{\left (\frac {6}{25 \, x^{3}}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.08, size = 20, normalized size = 0.83 \begin {gather*} x+{\mathrm {e}}^{\frac {6}{25\,x^3}}-\frac {2\,x+4}{{\left (x+4\right )}^2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.19, size = 24, normalized size = 1.00 \begin {gather*} x + \frac {- 2 x - 4}{x^{2} + 8 x + 16} + e^{\frac {6}{25 x^{3}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________