Optimal. Leaf size=21 \[ 16 \left (15-x-\log \left (3+e^{e^{4+e^x}}\right )\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.22, antiderivative size = 18, normalized size of antiderivative = 0.86, number of steps used = 3, number of rules used = 3, integrand size = 38, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.079, Rules used = {2282, 12, 6685} \begin {gather*} -16 \log \left (e^x \left (e^{e^{e^x+4}}+3\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 2282
Rule 6685
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\operatorname {Subst}\left (\int \frac {16 \left (-3-e^{e^{4+x}}-e^{4+e^{4+x}+x} x\right )}{\left (3+e^{e^{4+x}}\right ) x} \, dx,x,e^x\right )\\ &=16 \operatorname {Subst}\left (\int \frac {-3-e^{e^{4+x}}-e^{4+e^{4+x}+x} x}{\left (3+e^{e^{4+x}}\right ) x} \, dx,x,e^x\right )\\ &=-16 \log \left (e^x \left (3+e^{e^{4+e^x}}\right )\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.09, size = 16, normalized size = 0.76 \begin {gather*} -16 \left (x+\log \left (3+e^{e^{4+e^x}}\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.72, size = 15, normalized size = 0.71 \begin {gather*} -16 \, x - 16 \, \log \left (e^{\left (e^{\left (e^{x} + 4\right )}\right )} + 3\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.21, size = 29, normalized size = 1.38 \begin {gather*} -16 \, x + 16 \, e^{x} - 16 \, \log \left (e^{\left (e^{x} + e^{\left (e^{x} + 4\right )} + 4\right )} + 3 \, e^{\left (e^{x} + 4\right )}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.14, size = 16, normalized size = 0.76
method | result | size |
risch | \(-16 x -16 \ln \left ({\mathrm e}^{{\mathrm e}^{{\mathrm e}^{x}+4}}+3\right )\) | \(16\) |
norman | \(-16 x -16 \ln \left ({\mathrm e}^{{\mathrm e}^{4} {\mathrm e}^{{\mathrm e}^{x}}}+3\right )\) | \(17\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.39, size = 15, normalized size = 0.71 \begin {gather*} -16 \, x - 16 \, \log \left (e^{\left (e^{\left (e^{x} + 4\right )}\right )} + 3\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.15, size = 16, normalized size = 0.76 \begin {gather*} -16\,x-16\,\ln \left ({\mathrm {e}}^{{\mathrm {e}}^{{\mathrm {e}}^x}\,{\mathrm {e}}^4}+3\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.16, size = 19, normalized size = 0.90 \begin {gather*} - 16 x - 16 \log {\left (e^{e^{4} e^{e^{x}}} + 3 \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________