3.41.34 48+ee4+ex(1616e4+ex+x)3+ee4+exdx

Optimal. Leaf size=21 16(15xlog(3+ee4+ex))

________________________________________________________________________________________

Rubi [A]  time = 0.22, antiderivative size = 18, normalized size of antiderivative = 0.86, number of steps used = 3, number of rules used = 3, integrand size = 38, number of rulesintegrand size = 0.079, Rules used = {2282, 12, 6685} 16log(ex(eeex+4+3))

Antiderivative was successfully verified.

[In]

Int[(-48 + E^E^(4 + E^x)*(-16 - 16*E^(4 + E^x + x)))/(3 + E^E^(4 + E^x)),x]

[Out]

-16*Log[E^x*(3 + E^E^(4 + E^x))]

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 2282

Int[u_, x_Symbol] :> With[{v = FunctionOfExponential[u, x]}, Dist[v/D[v, x], Subst[Int[FunctionOfExponentialFu
nction[u, x]/x, x], x, v], x]] /; FunctionOfExponentialQ[u, x] &&  !MatchQ[u, (w_)*((a_.)*(v_)^(n_))^(m_) /; F
reeQ[{a, m, n}, x] && IntegerQ[m*n]] &&  !MatchQ[u, E^((c_.)*((a_.) + (b_.)*x))*(F_)[v_] /; FreeQ[{a, b, c}, x
] && InverseFunctionQ[F[x]]]

Rule 6685

Int[(u_)/((w_)*(y_)), x_Symbol] :> With[{q = DerivativeDivides[y*w, u, x]}, Simp[q*Log[RemoveContent[y*w, x]],
 x] /;  !FalseQ[q]]

Rubi steps

integral=Subst(16(3ee4+xe4+e4+x+xx)(3+ee4+x)xdx,x,ex)=16Subst(3ee4+xe4+e4+x+xx(3+ee4+x)xdx,x,ex)=16log(ex(3+ee4+ex))

________________________________________________________________________________________

Mathematica [A]  time = 0.09, size = 16, normalized size = 0.76 16(x+log(3+ee4+ex))

Antiderivative was successfully verified.

[In]

Integrate[(-48 + E^E^(4 + E^x)*(-16 - 16*E^(4 + E^x + x)))/(3 + E^E^(4 + E^x)),x]

[Out]

-16*(x + Log[3 + E^E^(4 + E^x)])

________________________________________________________________________________________

fricas [A]  time = 0.72, size = 15, normalized size = 0.71 16x16log(e(e(ex+4))+3)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((-16*exp(4)*exp(x)*exp(exp(x))-16)*exp(exp(4)*exp(exp(x)))-48)/(exp(exp(4)*exp(exp(x)))+3),x, algor
ithm="fricas")

[Out]

-16*x - 16*log(e^(e^(e^x + 4)) + 3)

________________________________________________________________________________________

giac [A]  time = 0.21, size = 29, normalized size = 1.38 16x+16ex16log(e(ex+e(ex+4)+4)+3e(ex+4))

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((-16*exp(4)*exp(x)*exp(exp(x))-16)*exp(exp(4)*exp(exp(x)))-48)/(exp(exp(4)*exp(exp(x)))+3),x, algor
ithm="giac")

[Out]

-16*x + 16*e^x - 16*log(e^(e^x + e^(e^x + 4) + 4) + 3*e^(e^x + 4))

________________________________________________________________________________________

maple [A]  time = 0.14, size = 16, normalized size = 0.76




method result size



risch 16x16ln(eeex+4+3) 16
norman 16x16ln(ee4eex+3) 17



Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((-16*exp(4)*exp(x)*exp(exp(x))-16)*exp(exp(4)*exp(exp(x)))-48)/(exp(exp(4)*exp(exp(x)))+3),x,method=_RETU
RNVERBOSE)

[Out]

-16*x-16*ln(exp(exp(exp(x)+4))+3)

________________________________________________________________________________________

maxima [A]  time = 0.39, size = 15, normalized size = 0.71 16x16log(e(e(ex+4))+3)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((-16*exp(4)*exp(x)*exp(exp(x))-16)*exp(exp(4)*exp(exp(x)))-48)/(exp(exp(4)*exp(exp(x)))+3),x, algor
ithm="maxima")

[Out]

-16*x - 16*log(e^(e^(e^x + 4)) + 3)

________________________________________________________________________________________

mupad [B]  time = 3.15, size = 16, normalized size = 0.76 16x16ln(eeexe4+3)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(-(exp(exp(exp(x))*exp(4))*(16*exp(exp(x))*exp(4)*exp(x) + 16) + 48)/(exp(exp(exp(x))*exp(4)) + 3),x)

[Out]

- 16*x - 16*log(exp(exp(exp(x))*exp(4)) + 3)

________________________________________________________________________________________

sympy [A]  time = 0.16, size = 19, normalized size = 0.90 16x16log(ee4eex+3)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((-16*exp(4)*exp(x)*exp(exp(x))-16)*exp(exp(4)*exp(exp(x)))-48)/(exp(exp(4)*exp(exp(x)))+3),x)

[Out]

-16*x - 16*log(exp(exp(4)*exp(exp(x))) + 3)

________________________________________________________________________________________