3.41.37 19(9+e8x(2502000x)+e12x(961152x)+e6x(48288x)+e16x(116x)+e14x(16+224x)+e4x(96+384x)+e10x(256+2560x))dx

Optimal. Leaf size=29 319(3e4x(4e2x)2)2x

________________________________________________________________________________________

Rubi [B]  time = 0.10, antiderivative size = 165, normalized size of antiderivative = 5.69, number of steps used = 16, number of rules used = 3, integrand size = 83, number of rulesintegrand size = 0.036, Rules used = {12, 2176, 2194} x8e4x3+8e6x9+125e8x36128e10x45+8e12x98e14x63+e16x144+83e4x(4x+1)89e6x(6x+1)12536e8x(8x+1)+12845e10x(10x+1)89e12x(12x+1)+863e14x(14x+1)1144e16x(16x+1)

Antiderivative was successfully verified.

[In]

Int[(-9 + E^(8*x)*(-250 - 2000*x) + E^(12*x)*(-96 - 1152*x) + E^(6*x)*(-48 - 288*x) + E^(16*x)*(-1 - 16*x) + E
^(14*x)*(16 + 224*x) + E^(4*x)*(96 + 384*x) + E^(10*x)*(256 + 2560*x))/9,x]

[Out]

(-8*E^(4*x))/3 + (8*E^(6*x))/9 + (125*E^(8*x))/36 - (128*E^(10*x))/45 + (8*E^(12*x))/9 - (8*E^(14*x))/63 + E^(
16*x)/144 - x + (8*E^(4*x)*(1 + 4*x))/3 - (8*E^(6*x)*(1 + 6*x))/9 - (125*E^(8*x)*(1 + 8*x))/36 + (128*E^(10*x)
*(1 + 10*x))/45 - (8*E^(12*x)*(1 + 12*x))/9 + (8*E^(14*x)*(1 + 14*x))/63 - (E^(16*x)*(1 + 16*x))/144

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 2176

Int[((b_.)*(F_)^((g_.)*((e_.) + (f_.)*(x_))))^(n_.)*((c_.) + (d_.)*(x_))^(m_.), x_Symbol] :> Simp[((c + d*x)^m
*(b*F^(g*(e + f*x)))^n)/(f*g*n*Log[F]), x] - Dist[(d*m)/(f*g*n*Log[F]), Int[(c + d*x)^(m - 1)*(b*F^(g*(e + f*x
)))^n, x], x] /; FreeQ[{F, b, c, d, e, f, g, n}, x] && GtQ[m, 0] && IntegerQ[2*m] &&  !$UseGamma === True

Rule 2194

Int[((F_)^((c_.)*((a_.) + (b_.)*(x_))))^(n_.), x_Symbol] :> Simp[(F^(c*(a + b*x)))^n/(b*c*n*Log[F]), x] /; Fre
eQ[{F, a, b, c, n}, x]

Rubi steps

integral=19(9+e8x(2502000x)+e12x(961152x)+e6x(48288x)+e16x(116x)+e14x(16+224x)+e4x(96+384x)+e10x(256+2560x))dx=x+19e8x(2502000x)dx+19e12x(961152x)dx+19e6x(48288x)dx+19e16x(116x)dx+19e14x(16+224x)dx+19e4x(96+384x)dx+19e10x(256+2560x)dx=x+83e4x(1+4x)89e6x(1+6x)12536e8x(1+8x)+12845e10x(1+10x)89e12x(1+12x)+863e14x(1+14x)1144e16x(1+16x)+19e16xdx169e14xdx+163e6xdx323e4xdx+323e12xdx+2509e8xdx2569e10xdx=8e4x3+8e6x9+125e8x36128e10x45+8e12x98e14x63+e16x144x+83e4x(1+4x)89e6x(1+6x)12536e8x(1+8x)+12845e10x(1+10x)89e12x(1+12x)+863e14x(1+14x)1144e16x(1+16x)

________________________________________________________________________________________

Mathematica [A]  time = 0.12, size = 28, normalized size = 0.97 19(3+16e4x8e6x+e8x)2x

Antiderivative was successfully verified.

[In]

Integrate[(-9 + E^(8*x)*(-250 - 2000*x) + E^(12*x)*(-96 - 1152*x) + E^(6*x)*(-48 - 288*x) + E^(16*x)*(-1 - 16*
x) + E^(14*x)*(16 + 224*x) + E^(4*x)*(96 + 384*x) + E^(10*x)*(256 + 2560*x))/9,x]

[Out]

-1/9*((-3 + 16*E^(4*x) - 8*E^(6*x) + E^(8*x))^2*x)

________________________________________________________________________________________

fricas [B]  time = 0.54, size = 53, normalized size = 1.83 19xe(16x)+169xe(14x)323xe(12x)+2569xe(10x)2509xe(8x)163xe(6x)+323xe(4x)x

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/9*(-16*x-1)*exp(x)^16+1/9*(224*x+16)*exp(x)^14+1/9*(-1152*x-96)*exp(x)^12+1/9*(2560*x+256)*exp(x)^
10+1/9*(-2000*x-250)*exp(x)^8+1/9*(-288*x-48)*exp(x)^6+1/9*(384*x+96)*exp(x)^4-1,x, algorithm="fricas")

[Out]

-1/9*x*e^(16*x) + 16/9*x*e^(14*x) - 32/3*x*e^(12*x) + 256/9*x*e^(10*x) - 250/9*x*e^(8*x) - 16/3*x*e^(6*x) + 32
/3*x*e^(4*x) - x

________________________________________________________________________________________

giac [B]  time = 0.14, size = 53, normalized size = 1.83 19xe(16x)+169xe(14x)323xe(12x)+2569xe(10x)2509xe(8x)163xe(6x)+323xe(4x)x

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/9*(-16*x-1)*exp(x)^16+1/9*(224*x+16)*exp(x)^14+1/9*(-1152*x-96)*exp(x)^12+1/9*(2560*x+256)*exp(x)^
10+1/9*(-2000*x-250)*exp(x)^8+1/9*(-288*x-48)*exp(x)^6+1/9*(384*x+96)*exp(x)^4-1,x, algorithm="giac")

[Out]

-1/9*x*e^(16*x) + 16/9*x*e^(14*x) - 32/3*x*e^(12*x) + 256/9*x*e^(10*x) - 250/9*x*e^(8*x) - 16/3*x*e^(6*x) + 32
/3*x*e^(4*x) - x

________________________________________________________________________________________

maple [B]  time = 0.04, size = 54, normalized size = 1.86




method result size



default x250xe8x932e12xx316xe6x3e16xx9+16e14xx9+32xe4x3+256e10xx9 54
risch x250xe8x932e12xx316xe6x3e16xx9+16e14xx9+32xe4x3+256e10xx9 54



Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/9*(-16*x-1)*exp(x)^16+1/9*(224*x+16)*exp(x)^14+1/9*(-1152*x-96)*exp(x)^12+1/9*(2560*x+256)*exp(x)^10+1/9
*(-2000*x-250)*exp(x)^8+1/9*(-288*x-48)*exp(x)^6+1/9*(384*x+96)*exp(x)^4-1,x,method=_RETURNVERBOSE)

[Out]

-x-250/9*x*exp(x)^8-32/3*exp(x)^12*x-16/3*x*exp(x)^6-1/9*exp(x)^16*x+16/9*exp(x)^14*x+32/3*x*exp(x)^4+256/9*ex
p(x)^10*x

________________________________________________________________________________________

maxima [B]  time = 0.37, size = 63, normalized size = 2.17 19xe(16x)+169xe(14x)323xe(12x)+2569xe(10x)2509xe(8x)163xe(6x)+83(4x1)e(4x)x+83e(4x)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/9*(-16*x-1)*exp(x)^16+1/9*(224*x+16)*exp(x)^14+1/9*(-1152*x-96)*exp(x)^12+1/9*(2560*x+256)*exp(x)^
10+1/9*(-2000*x-250)*exp(x)^8+1/9*(-288*x-48)*exp(x)^6+1/9*(384*x+96)*exp(x)^4-1,x, algorithm="maxima")

[Out]

-1/9*x*e^(16*x) + 16/9*x*e^(14*x) - 32/3*x*e^(12*x) + 256/9*x*e^(10*x) - 250/9*x*e^(8*x) - 16/3*x*e^(6*x) + 8/
3*(4*x - 1)*e^(4*x) - x + 8/3*e^(4*x)

________________________________________________________________________________________

mupad [B]  time = 3.09, size = 23, normalized size = 0.79 x(16e4x8e6x+e8x3)29

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((exp(14*x)*(224*x + 16))/9 - (exp(16*x)*(16*x + 1))/9 - (exp(6*x)*(288*x + 48))/9 + (exp(4*x)*(384*x + 96)
)/9 - (exp(12*x)*(1152*x + 96))/9 - (exp(8*x)*(2000*x + 250))/9 + (exp(10*x)*(2560*x + 256))/9 - 1,x)

[Out]

-(x*(16*exp(4*x) - 8*exp(6*x) + exp(8*x) - 3)^2)/9

________________________________________________________________________________________

sympy [B]  time = 0.21, size = 70, normalized size = 2.41 xe16x9+16xe14x932xe12x3+256xe10x9250xe8x916xe6x3+32xe4x3x

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/9*(-16*x-1)*exp(x)**16+1/9*(224*x+16)*exp(x)**14+1/9*(-1152*x-96)*exp(x)**12+1/9*(2560*x+256)*exp(
x)**10+1/9*(-2000*x-250)*exp(x)**8+1/9*(-288*x-48)*exp(x)**6+1/9*(384*x+96)*exp(x)**4-1,x)

[Out]

-x*exp(16*x)/9 + 16*x*exp(14*x)/9 - 32*x*exp(12*x)/3 + 256*x*exp(10*x)/9 - 250*x*exp(8*x)/9 - 16*x*exp(6*x)/3
+ 32*x*exp(4*x)/3 - x

________________________________________________________________________________________