Optimal. Leaf size=29 \[ 3-\frac {1}{9} \left (3-e^{4 x} \left (4-e^{2 x}\right )^2\right )^2 x \]
________________________________________________________________________________________
Rubi [B] time = 0.10, antiderivative size = 165, normalized size of antiderivative = 5.69, number of steps used = 16, number of rules used = 3, integrand size = 83, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.036, Rules used = {12, 2176, 2194} \begin {gather*} -x-\frac {8 e^{4 x}}{3}+\frac {8 e^{6 x}}{9}+\frac {125 e^{8 x}}{36}-\frac {128 e^{10 x}}{45}+\frac {8 e^{12 x}}{9}-\frac {8 e^{14 x}}{63}+\frac {e^{16 x}}{144}+\frac {8}{3} e^{4 x} (4 x+1)-\frac {8}{9} e^{6 x} (6 x+1)-\frac {125}{36} e^{8 x} (8 x+1)+\frac {128}{45} e^{10 x} (10 x+1)-\frac {8}{9} e^{12 x} (12 x+1)+\frac {8}{63} e^{14 x} (14 x+1)-\frac {1}{144} e^{16 x} (16 x+1) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 2176
Rule 2194
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{9} \int \left (-9+e^{8 x} (-250-2000 x)+e^{12 x} (-96-1152 x)+e^{6 x} (-48-288 x)+e^{16 x} (-1-16 x)+e^{14 x} (16+224 x)+e^{4 x} (96+384 x)+e^{10 x} (256+2560 x)\right ) \, dx\\ &=-x+\frac {1}{9} \int e^{8 x} (-250-2000 x) \, dx+\frac {1}{9} \int e^{12 x} (-96-1152 x) \, dx+\frac {1}{9} \int e^{6 x} (-48-288 x) \, dx+\frac {1}{9} \int e^{16 x} (-1-16 x) \, dx+\frac {1}{9} \int e^{14 x} (16+224 x) \, dx+\frac {1}{9} \int e^{4 x} (96+384 x) \, dx+\frac {1}{9} \int e^{10 x} (256+2560 x) \, dx\\ &=-x+\frac {8}{3} e^{4 x} (1+4 x)-\frac {8}{9} e^{6 x} (1+6 x)-\frac {125}{36} e^{8 x} (1+8 x)+\frac {128}{45} e^{10 x} (1+10 x)-\frac {8}{9} e^{12 x} (1+12 x)+\frac {8}{63} e^{14 x} (1+14 x)-\frac {1}{144} e^{16 x} (1+16 x)+\frac {1}{9} \int e^{16 x} \, dx-\frac {16}{9} \int e^{14 x} \, dx+\frac {16}{3} \int e^{6 x} \, dx-\frac {32}{3} \int e^{4 x} \, dx+\frac {32}{3} \int e^{12 x} \, dx+\frac {250}{9} \int e^{8 x} \, dx-\frac {256}{9} \int e^{10 x} \, dx\\ &=-\frac {8 e^{4 x}}{3}+\frac {8 e^{6 x}}{9}+\frac {125 e^{8 x}}{36}-\frac {128 e^{10 x}}{45}+\frac {8 e^{12 x}}{9}-\frac {8 e^{14 x}}{63}+\frac {e^{16 x}}{144}-x+\frac {8}{3} e^{4 x} (1+4 x)-\frac {8}{9} e^{6 x} (1+6 x)-\frac {125}{36} e^{8 x} (1+8 x)+\frac {128}{45} e^{10 x} (1+10 x)-\frac {8}{9} e^{12 x} (1+12 x)+\frac {8}{63} e^{14 x} (1+14 x)-\frac {1}{144} e^{16 x} (1+16 x)\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.12, size = 28, normalized size = 0.97 \begin {gather*} -\frac {1}{9} \left (-3+16 e^{4 x}-8 e^{6 x}+e^{8 x}\right )^2 x \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.54, size = 53, normalized size = 1.83 \begin {gather*} -\frac {1}{9} \, x e^{\left (16 \, x\right )} + \frac {16}{9} \, x e^{\left (14 \, x\right )} - \frac {32}{3} \, x e^{\left (12 \, x\right )} + \frac {256}{9} \, x e^{\left (10 \, x\right )} - \frac {250}{9} \, x e^{\left (8 \, x\right )} - \frac {16}{3} \, x e^{\left (6 \, x\right )} + \frac {32}{3} \, x e^{\left (4 \, x\right )} - x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.14, size = 53, normalized size = 1.83 \begin {gather*} -\frac {1}{9} \, x e^{\left (16 \, x\right )} + \frac {16}{9} \, x e^{\left (14 \, x\right )} - \frac {32}{3} \, x e^{\left (12 \, x\right )} + \frac {256}{9} \, x e^{\left (10 \, x\right )} - \frac {250}{9} \, x e^{\left (8 \, x\right )} - \frac {16}{3} \, x e^{\left (6 \, x\right )} + \frac {32}{3} \, x e^{\left (4 \, x\right )} - x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [B] time = 0.04, size = 54, normalized size = 1.86
method | result | size |
default | \(-x -\frac {250 x \,{\mathrm e}^{8 x}}{9}-\frac {32 \,{\mathrm e}^{12 x} x}{3}-\frac {16 x \,{\mathrm e}^{6 x}}{3}-\frac {{\mathrm e}^{16 x} x}{9}+\frac {16 \,{\mathrm e}^{14 x} x}{9}+\frac {32 x \,{\mathrm e}^{4 x}}{3}+\frac {256 \,{\mathrm e}^{10 x} x}{9}\) | \(54\) |
risch | \(-x -\frac {250 x \,{\mathrm e}^{8 x}}{9}-\frac {32 \,{\mathrm e}^{12 x} x}{3}-\frac {16 x \,{\mathrm e}^{6 x}}{3}-\frac {{\mathrm e}^{16 x} x}{9}+\frac {16 \,{\mathrm e}^{14 x} x}{9}+\frac {32 x \,{\mathrm e}^{4 x}}{3}+\frac {256 \,{\mathrm e}^{10 x} x}{9}\) | \(54\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.37, size = 63, normalized size = 2.17 \begin {gather*} -\frac {1}{9} \, x e^{\left (16 \, x\right )} + \frac {16}{9} \, x e^{\left (14 \, x\right )} - \frac {32}{3} \, x e^{\left (12 \, x\right )} + \frac {256}{9} \, x e^{\left (10 \, x\right )} - \frac {250}{9} \, x e^{\left (8 \, x\right )} - \frac {16}{3} \, x e^{\left (6 \, x\right )} + \frac {8}{3} \, {\left (4 \, x - 1\right )} e^{\left (4 \, x\right )} - x + \frac {8}{3} \, e^{\left (4 \, x\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.09, size = 23, normalized size = 0.79 \begin {gather*} -\frac {x\,{\left (16\,{\mathrm {e}}^{4\,x}-8\,{\mathrm {e}}^{6\,x}+{\mathrm {e}}^{8\,x}-3\right )}^2}{9} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.21, size = 70, normalized size = 2.41 \begin {gather*} - \frac {x e^{16 x}}{9} + \frac {16 x e^{14 x}}{9} - \frac {32 x e^{12 x}}{3} + \frac {256 x e^{10 x}}{9} - \frac {250 x e^{8 x}}{9} - \frac {16 x e^{6 x}}{3} + \frac {32 x e^{4 x}}{3} - x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________