Optimal. Leaf size=21 \[ 1-4 x+\frac {5}{x^2 \left (x-x^2 \log (x)\right )} \]
________________________________________________________________________________________
Rubi [F] time = 0.50, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-15+5 x-4 x^4+\left (20 x+8 x^5\right ) \log (x)-4 x^6 \log ^2(x)}{x^4-2 x^5 \log (x)+x^6 \log ^2(x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-15+5 x-4 x^4+\left (20 x+8 x^5\right ) \log (x)-4 x^6 \log ^2(x)}{x^4 (1-x \log (x))^2} \, dx\\ &=\int \left (-4+\frac {5 (1+x)}{x^4 (-1+x \log (x))^2}+\frac {20}{x^4 (-1+x \log (x))}\right ) \, dx\\ &=-4 x+5 \int \frac {1+x}{x^4 (-1+x \log (x))^2} \, dx+20 \int \frac {1}{x^4 (-1+x \log (x))} \, dx\\ &=-4 x+5 \int \left (\frac {1}{x^4 (-1+x \log (x))^2}+\frac {1}{x^3 (-1+x \log (x))^2}\right ) \, dx+20 \int \frac {1}{x^4 (-1+x \log (x))} \, dx\\ &=-4 x+5 \int \frac {1}{x^4 (-1+x \log (x))^2} \, dx+5 \int \frac {1}{x^3 (-1+x \log (x))^2} \, dx+20 \int \frac {1}{x^4 (-1+x \log (x))} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.15, size = 17, normalized size = 0.81 \begin {gather*} -4 x-\frac {5}{x^3 (-1+x \log (x))} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.54, size = 30, normalized size = 1.43 \begin {gather*} -\frac {4 \, x^{5} \log \relax (x) - 4 \, x^{4} + 5}{x^{4} \log \relax (x) - x^{3}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.14, size = 20, normalized size = 0.95 \begin {gather*} -4 \, x - \frac {5}{x^{4} \log \relax (x) - x^{3}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.03, size = 18, normalized size = 0.86
method | result | size |
risch | \(-4 x -\frac {5}{x^{3} \left (x \ln \relax (x )-1\right )}\) | \(18\) |
norman | \(\frac {-5+4 x^{4}-4 x^{5} \ln \relax (x )}{x^{3} \left (x \ln \relax (x )-1\right )}\) | \(27\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.39, size = 30, normalized size = 1.43 \begin {gather*} -\frac {4 \, x^{5} \log \relax (x) - 4 \, x^{4} + 5}{x^{4} \log \relax (x) - x^{3}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.22, size = 17, normalized size = 0.81 \begin {gather*} -4\,x-\frac {5}{x^3\,\left (x\,\ln \relax (x)-1\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.10, size = 15, normalized size = 0.71 \begin {gather*} - 4 x - \frac {5}{x^{4} \log {\relax (x )} - x^{3}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________