3.41.46 8+22x+13x213xlog(3exx22)+2xlog2(3exx22)xlog2(3exx22)dx

Optimal. Leaf size=23 2x+413xlog(3exx22)

________________________________________________________________________________________

Rubi [F]  time = 0.38, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, number of rulesintegrand size = 0.000, Rules used = {} 8+22x+13x213xlog(3exx22)+2xlog2(3exx22)xlog2(3exx22)dx

Verification is not applicable to the result.

[In]

Int[(-8 + 22*x + 13*x^2 - 13*x*Log[(3*E^x*x^2)/2] + 2*x*Log[(3*E^x*x^2)/2]^2)/(x*Log[(3*E^x*x^2)/2]^2),x]

[Out]

2*x + 22*Defer[Int][Log[(3*E^x*x^2)/2]^(-2), x] - 8*Defer[Int][1/(x*Log[(3*E^x*x^2)/2]^2), x] + 13*Defer[Int][
x/Log[(3*E^x*x^2)/2]^2, x] - 13*Defer[Int][Log[(3*E^x*x^2)/2]^(-1), x]

Rubi steps

integral=(2+8+22x+13x2xlog2(3exx22)13log(3exx22))dx=2x131log(3exx22)dx+8+22x+13x2xlog2(3exx22)dx=2x131log(3exx22)dx+(22log2(3exx22)8xlog2(3exx22)+13xlog2(3exx22))dx=2x81xlog2(3exx22)dx+13xlog2(3exx22)dx131log(3exx22)dx+221log2(3exx22)dx

________________________________________________________________________________________

Mathematica [A]  time = 0.67, size = 23, normalized size = 1.00 2x+413xlog(3exx22)

Antiderivative was successfully verified.

[In]

Integrate[(-8 + 22*x + 13*x^2 - 13*x*Log[(3*E^x*x^2)/2] + 2*x*Log[(3*E^x*x^2)/2]^2)/(x*Log[(3*E^x*x^2)/2]^2),x
]

[Out]

2*x + (4 - 13*x)/Log[(3*E^x*x^2)/2]

________________________________________________________________________________________

fricas [A]  time = 1.29, size = 27, normalized size = 1.17 2xlog(32x2ex)13x+4log(32x2ex)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((2*x*log(3/2*exp(x)*x^2)^2-13*x*log(3/2*exp(x)*x^2)+13*x^2+22*x-8)/x/log(3/2*exp(x)*x^2)^2,x, algori
thm="fricas")

[Out]

(2*x*log(3/2*x^2*e^x) - 13*x + 4)/log(3/2*x^2*e^x)

________________________________________________________________________________________

giac [A]  time = 0.22, size = 21, normalized size = 0.91 2x13x4x+log(32x2)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((2*x*log(3/2*exp(x)*x^2)^2-13*x*log(3/2*exp(x)*x^2)+13*x^2+22*x-8)/x/log(3/2*exp(x)*x^2)^2,x, algori
thm="giac")

[Out]

2*x - (13*x - 4)/(x + log(3/2*x^2))

________________________________________________________________________________________

maple [A]  time = 0.25, size = 28, normalized size = 1.22




method result size



norman 4+2xln(3exx22)13xln(3exx22) 28
default (4ln(3exx22)+8ln(x)+4x+26)ln(x)+4xln(x)+2x2+42(ln(3exx22)2ln(x)x)2+13ln(3exx22)26ln(x)13xln(3exx22) 83
risch 2x2i(13x4)πcsgn(ix)2csgn(ix2)2πcsgn(ix)csgn(ix2)2+πcsgn(ix2)3+πcsgn(ix2)csgn(iex)csgn(ix2ex)πcsgn(ix2)csgn(ix2ex)2πcsgn(iex)csgn(ix2ex)2+πcsgn(ix2ex)32iln(2)+2iln(3)+4iln(x)+2iln(ex) 159



Verification of antiderivative is not currently implemented for this CAS.

[In]

int((2*x*ln(3/2*exp(x)*x^2)^2-13*x*ln(3/2*exp(x)*x^2)+13*x^2+22*x-8)/x/ln(3/2*exp(x)*x^2)^2,x,method=_RETURNVE
RBOSE)

[Out]

(4+2*x*ln(3/2*exp(x)*x^2)-13*x)/ln(3/2*exp(x)*x^2)

________________________________________________________________________________________

maxima [A]  time = 0.49, size = 25, normalized size = 1.09 2x13x4x+log(3)log(2)+2log(x)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((2*x*log(3/2*exp(x)*x^2)^2-13*x*log(3/2*exp(x)*x^2)+13*x^2+22*x-8)/x/log(3/2*exp(x)*x^2)^2,x, algori
thm="maxima")

[Out]

2*x - (13*x - 4)/(x + log(3) - log(2) + 2*log(x))

________________________________________________________________________________________

mupad [B]  time = 3.08, size = 21, normalized size = 0.91 2x13x4ln(3x2ex2)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((22*x - 13*x*log((3*x^2*exp(x))/2) + 2*x*log((3*x^2*exp(x))/2)^2 + 13*x^2 - 8)/(x*log((3*x^2*exp(x))/2)^2)
,x)

[Out]

2*x - (13*x - 4)/log((3*x^2*exp(x))/2)

________________________________________________________________________________________

sympy [A]  time = 0.13, size = 19, normalized size = 0.83 2x+413xlog(3x2ex2)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((2*x*ln(3/2*exp(x)*x**2)**2-13*x*ln(3/2*exp(x)*x**2)+13*x**2+22*x-8)/x/ln(3/2*exp(x)*x**2)**2,x)

[Out]

2*x + (4 - 13*x)/log(3*x**2*exp(x)/2)

________________________________________________________________________________________