3.41.68 (8x139x2+eex(2xexx2)+51x2log(x))dx

Optimal. Leaf size=25 x2(4eexx17x(3log(x)))

________________________________________________________________________________________

Rubi [A]  time = 0.03, antiderivative size = 28, normalized size of antiderivative = 1.12, number of steps used = 3, number of rules used = 2, integrand size = 34, number of rulesintegrand size = 0.059, Rules used = {2288, 2304} 52x3+17x3log(x)eexx2+4x2

Antiderivative was successfully verified.

[In]

Int[8*x - 139*x^2 + E^E^x*(-2*x - E^x*x^2) + 51*x^2*Log[x],x]

[Out]

4*x^2 - E^E^x*x^2 - 52*x^3 + 17*x^3*Log[x]

Rule 2288

Int[(y_.)*(F_)^(u_)*((v_) + (w_)), x_Symbol] :> With[{z = (v*y)/(Log[F]*D[u, x])}, Simp[F^u*z, x] /; EqQ[D[z,
x], w*y]] /; FreeQ[F, x]

Rule 2304

Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))*((d_.)*(x_))^(m_.), x_Symbol] :> Simp[((d*x)^(m + 1)*(a + b*Log[c*x^
n]))/(d*(m + 1)), x] - Simp[(b*n*(d*x)^(m + 1))/(d*(m + 1)^2), x] /; FreeQ[{a, b, c, d, m, n}, x] && NeQ[m, -1
]

Rubi steps

integral=4x2139x33+51x2log(x)dx+eex(2xexx2)dx=4x2eexx252x3+17x3log(x)

________________________________________________________________________________________

Mathematica [A]  time = 0.03, size = 21, normalized size = 0.84 x2(4eex52x+17xlog(x))

Antiderivative was successfully verified.

[In]

Integrate[8*x - 139*x^2 + E^E^x*(-2*x - E^x*x^2) + 51*x^2*Log[x],x]

[Out]

x^2*(4 - E^E^x - 52*x + 17*x*Log[x])

________________________________________________________________________________________

fricas [A]  time = 0.64, size = 26, normalized size = 1.04 17x3log(x)52x3x2e(ex)+4x2

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-exp(x)*x^2-2*x)*exp(exp(x))+51*x^2*log(x)-139*x^2+8*x,x, algorithm="fricas")

[Out]

17*x^3*log(x) - 52*x^3 - x^2*e^(e^x) + 4*x^2

________________________________________________________________________________________

giac [A]  time = 0.15, size = 26, normalized size = 1.04 17x3log(x)52x3x2e(ex)+4x2

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-exp(x)*x^2-2*x)*exp(exp(x))+51*x^2*log(x)-139*x^2+8*x,x, algorithm="giac")

[Out]

17*x^3*log(x) - 52*x^3 - x^2*e^(e^x) + 4*x^2

________________________________________________________________________________________

maple [A]  time = 0.03, size = 27, normalized size = 1.08




method result size



default eexx2+4x252x3+17x3ln(x) 27
risch eexx2+4x252x3+17x3ln(x) 27



Verification of antiderivative is not currently implemented for this CAS.

[In]

int((-exp(x)*x^2-2*x)*exp(exp(x))+51*x^2*ln(x)-139*x^2+8*x,x,method=_RETURNVERBOSE)

[Out]

-exp(exp(x))*x^2+4*x^2-52*x^3+17*x^3*ln(x)

________________________________________________________________________________________

maxima [A]  time = 0.35, size = 26, normalized size = 1.04 17x3log(x)52x3x2e(ex)+4x2

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-exp(x)*x^2-2*x)*exp(exp(x))+51*x^2*log(x)-139*x^2+8*x,x, algorithm="maxima")

[Out]

17*x^3*log(x) - 52*x^3 - x^2*e^(e^x) + 4*x^2

________________________________________________________________________________________

mupad [B]  time = 3.16, size = 18, normalized size = 0.72 x2(52x+eex17xln(x)4)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(8*x + 51*x^2*log(x) - 139*x^2 - exp(exp(x))*(2*x + x^2*exp(x)),x)

[Out]

-x^2*(52*x + exp(exp(x)) - 17*x*log(x) - 4)

________________________________________________________________________________________

sympy [A]  time = 0.30, size = 26, normalized size = 1.04 17x3log(x)52x3x2eex+4x2

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-exp(x)*x**2-2*x)*exp(exp(x))+51*x**2*ln(x)-139*x**2+8*x,x)

[Out]

17*x**3*log(x) - 52*x**3 - x**2*exp(exp(x)) + 4*x**2

________________________________________________________________________________________