3.41.70
Optimal. Leaf size=24
________________________________________________________________________________________
Rubi [A] time = 0.57, antiderivative size = 26, normalized size of antiderivative = 1.08,
number of steps used = 2, number of rules used = 2, integrand size = 154, = 0.013, Rules used
= {6688, 6686}
Antiderivative was successfully verified.
[In]
Int[(8*x + 4*E^(2*x)*x + E^x*(-4 - 4*x - 4*x^2))/(4*E^(3*x)*x - 4*E^(2*x)*x^2 + (-4*E^(2*x)*x + 4*E^x*x^2)*Log
[x^2] + (E^x*x - x^2)*Log[x^2]^2 + (-8*E^(2*x)*x + 8*E^x*x^2 + (4*E^x*x - 4*x^2)*Log[x^2])*Log[-E^x + x] + (4*
E^x*x - 4*x^2)*Log[-E^x + x]^2),x]
[Out]
-2/(2*E^x - Log[x^2] - 2*Log[-E^x + x])
Rule 6686
Int[(u_)*(y_)^(m_.), x_Symbol] :> With[{q = DerivativeDivides[y, u, x]}, Simp[(q*y^(m + 1))/(m + 1), x] /; !F
alseQ[q]] /; FreeQ[m, x] && NeQ[m, -1]
Rule 6688
Int[u_, x_Symbol] :> With[{v = SimplifyIntegrand[u, x]}, Int[v, x] /; SimplerIntegrandQ[v, u, x]]
Rubi steps
________________________________________________________________________________________
Mathematica [A] time = 0.08, size = 24, normalized size = 1.00
Antiderivative was successfully verified.
[In]
Integrate[(8*x + 4*E^(2*x)*x + E^x*(-4 - 4*x - 4*x^2))/(4*E^(3*x)*x - 4*E^(2*x)*x^2 + (-4*E^(2*x)*x + 4*E^x*x^
2)*Log[x^2] + (E^x*x - x^2)*Log[x^2]^2 + (-8*E^(2*x)*x + 8*E^x*x^2 + (4*E^x*x - 4*x^2)*Log[x^2])*Log[-E^x + x]
+ (4*E^x*x - 4*x^2)*Log[-E^x + x]^2),x]
[Out]
2/(-2*E^x + Log[x^2] + 2*Log[-E^x + x])
________________________________________________________________________________________
fricas [A] time = 0.92, size = 24, normalized size = 1.00
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate((4*x*exp(x)^2+(-4*x^2-4*x-4)*exp(x)+8*x)/((4*exp(x)*x-4*x^2)*log(x-exp(x))^2+((4*exp(x)*x-4*x^2)*log
(x^2)-8*x*exp(x)^2+8*exp(x)*x^2)*log(x-exp(x))+(exp(x)*x-x^2)*log(x^2)^2+(-4*x*exp(x)^2+4*exp(x)*x^2)*log(x^2)
+4*x*exp(x)^3-4*exp(x)^2*x^2),x, algorithm="fricas")
[Out]
-2/(2*e^x - log(x^2) - 2*log(x - e^x))
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate((4*x*exp(x)^2+(-4*x^2-4*x-4)*exp(x)+8*x)/((4*exp(x)*x-4*x^2)*log(x-exp(x))^2+((4*exp(x)*x-4*x^2)*log
(x^2)-8*x*exp(x)^2+8*exp(x)*x^2)*log(x-exp(x))+(exp(x)*x-x^2)*log(x^2)^2+(-4*x*exp(x)^2+4*exp(x)*x^2)*log(x^2)
+4*x*exp(x)^3-4*exp(x)^2*x^2),x, algorithm="giac")
[Out]
integrate(-4*(x*e^(2*x) - (x^2 + x + 1)*e^x + 2*x)/(4*x^2*e^(2*x) + (x^2 - x*e^x)*log(x^2)^2 + 4*(x^2 - x*e^x)
*log(x - e^x)^2 - 4*x*e^(3*x) - 4*(x^2*e^x - x*e^(2*x))*log(x^2) - 4*(2*x^2*e^x - 2*x*e^(2*x) - (x^2 - x*e^x)*
log(x^2))*log(x - e^x)), x)
________________________________________________________________________________________
maple [C] time = 0.12, size = 71, normalized size = 2.96
Verification of antiderivative is not currently implemented for this CAS.
[In]
int((4*x*exp(x)^2+(-4*x^2-4*x-4)*exp(x)+8*x)/((4*exp(x)*x-4*x^2)*ln(x-exp(x))^2+((4*exp(x)*x-4*x^2)*ln(x^2)-8*
x*exp(x)^2+8*exp(x)*x^2)*ln(x-exp(x))+(exp(x)*x-x^2)*ln(x^2)^2+(-4*x*exp(x)^2+4*exp(x)*x^2)*ln(x^2)+4*x*exp(x)
^3-4*exp(x)^2*x^2),x,method=_RETURNVERBOSE)
[Out]
4*I/(Pi*csgn(I*x)^2*csgn(I*x^2)-2*Pi*csgn(I*x)*csgn(I*x^2)^2+Pi*csgn(I*x^2)^3-4*I*exp(x)+4*I*ln(x)+4*I*ln(x-ex
p(x)))
________________________________________________________________________________________
maxima [A] time = 0.51, size = 20, normalized size = 0.83
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate((4*x*exp(x)^2+(-4*x^2-4*x-4)*exp(x)+8*x)/((4*exp(x)*x-4*x^2)*log(x-exp(x))^2+((4*exp(x)*x-4*x^2)*log
(x^2)-8*x*exp(x)^2+8*exp(x)*x^2)*log(x-exp(x))+(exp(x)*x-x^2)*log(x^2)^2+(-4*x*exp(x)^2+4*exp(x)*x^2)*log(x^2)
+4*x*exp(x)^3-4*exp(x)^2*x^2),x, algorithm="maxima")
[Out]
-1/(e^x - log(x - e^x) - log(x))
________________________________________________________________________________________
mupad [B] time = 3.25, size = 22, normalized size = 0.92
Verification of antiderivative is not currently implemented for this CAS.
[In]
int((8*x + 4*x*exp(2*x) - exp(x)*(4*x + 4*x^2 + 4))/(4*x*exp(3*x) - log(x^2)*(4*x*exp(2*x) - 4*x^2*exp(x)) + l
og(x^2)^2*(x*exp(x) - x^2) + log(x - exp(x))*(8*x^2*exp(x) - 8*x*exp(2*x) + log(x^2)*(4*x*exp(x) - 4*x^2)) - 4
*x^2*exp(2*x) + log(x - exp(x))^2*(4*x*exp(x) - 4*x^2)),x)
[Out]
2/(log(x^2) + 2*log(x - exp(x)) - 2*exp(x))
________________________________________________________________________________________
sympy [A] time = 0.43, size = 19, normalized size = 0.79
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate((4*x*exp(x)**2+(-4*x**2-4*x-4)*exp(x)+8*x)/((4*exp(x)*x-4*x**2)*ln(x-exp(x))**2+((4*exp(x)*x-4*x**2)
*ln(x**2)-8*x*exp(x)**2+8*exp(x)*x**2)*ln(x-exp(x))+(exp(x)*x-x**2)*ln(x**2)**2+(-4*x*exp(x)**2+4*exp(x)*x**2)
*ln(x**2)+4*x*exp(x)**3-4*exp(x)**2*x**2),x)
[Out]
2/(-2*exp(x) + log(x**2) + 2*log(x - exp(x)))
________________________________________________________________________________________