3.41.70 8x+4e2xx+ex(44x4x2)4e3xx4e2xx2+(4e2xx+4exx2)log(x2)+(exxx2)log2(x2)+(8e2xx+8exx2+(4exx4x2)log(x2))log(ex+x)+(4exx4x2)log2(ex+x)dx

Optimal. Leaf size=24 1ex+log(x2)2+log(ex+x)

________________________________________________________________________________________

Rubi [A]  time = 0.57, antiderivative size = 26, normalized size of antiderivative = 1.08, number of steps used = 2, number of rules used = 2, integrand size = 154, number of rulesintegrand size = 0.013, Rules used = {6688, 6686} 2log(x2)+2ex2log(xex)

Antiderivative was successfully verified.

[In]

Int[(8*x + 4*E^(2*x)*x + E^x*(-4 - 4*x - 4*x^2))/(4*E^(3*x)*x - 4*E^(2*x)*x^2 + (-4*E^(2*x)*x + 4*E^x*x^2)*Log
[x^2] + (E^x*x - x^2)*Log[x^2]^2 + (-8*E^(2*x)*x + 8*E^x*x^2 + (4*E^x*x - 4*x^2)*Log[x^2])*Log[-E^x + x] + (4*
E^x*x - 4*x^2)*Log[-E^x + x]^2),x]

[Out]

-2/(2*E^x - Log[x^2] - 2*Log[-E^x + x])

Rule 6686

Int[(u_)*(y_)^(m_.), x_Symbol] :> With[{q = DerivativeDivides[y, u, x]}, Simp[(q*y^(m + 1))/(m + 1), x] /;  !F
alseQ[q]] /; FreeQ[m, x] && NeQ[m, -1]

Rule 6688

Int[u_, x_Symbol] :> With[{v = SimplifyIntegrand[u, x]}, Int[v, x] /; SimplerIntegrandQ[v, u, x]]

Rubi steps

integral=8x+4e2xx4ex(1+x+x2)(exx)x(2exlog(x2)2log(ex+x))2dx=22exlog(x2)2log(ex+x)

________________________________________________________________________________________

Mathematica [A]  time = 0.08, size = 24, normalized size = 1.00 22ex+log(x2)+2log(ex+x)

Antiderivative was successfully verified.

[In]

Integrate[(8*x + 4*E^(2*x)*x + E^x*(-4 - 4*x - 4*x^2))/(4*E^(3*x)*x - 4*E^(2*x)*x^2 + (-4*E^(2*x)*x + 4*E^x*x^
2)*Log[x^2] + (E^x*x - x^2)*Log[x^2]^2 + (-8*E^(2*x)*x + 8*E^x*x^2 + (4*E^x*x - 4*x^2)*Log[x^2])*Log[-E^x + x]
 + (4*E^x*x - 4*x^2)*Log[-E^x + x]^2),x]

[Out]

2/(-2*E^x + Log[x^2] + 2*Log[-E^x + x])

________________________________________________________________________________________

fricas [A]  time = 0.92, size = 24, normalized size = 1.00 22exlog(x2)2log(xex)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((4*x*exp(x)^2+(-4*x^2-4*x-4)*exp(x)+8*x)/((4*exp(x)*x-4*x^2)*log(x-exp(x))^2+((4*exp(x)*x-4*x^2)*log
(x^2)-8*x*exp(x)^2+8*exp(x)*x^2)*log(x-exp(x))+(exp(x)*x-x^2)*log(x^2)^2+(-4*x*exp(x)^2+4*exp(x)*x^2)*log(x^2)
+4*x*exp(x)^3-4*exp(x)^2*x^2),x, algorithm="fricas")

[Out]

-2/(2*e^x - log(x^2) - 2*log(x - e^x))

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 4(xe(2x)(x2+x+1)ex+2x)4x2e(2x)+(x2xex)log(x2)2+4(x2xex)log(xex)24xe(3x)4(x2exxe(2x))log(x2)4(2x2ex2xe(2x)(x2xex)log(x2))log(xex)dx

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((4*x*exp(x)^2+(-4*x^2-4*x-4)*exp(x)+8*x)/((4*exp(x)*x-4*x^2)*log(x-exp(x))^2+((4*exp(x)*x-4*x^2)*log
(x^2)-8*x*exp(x)^2+8*exp(x)*x^2)*log(x-exp(x))+(exp(x)*x-x^2)*log(x^2)^2+(-4*x*exp(x)^2+4*exp(x)*x^2)*log(x^2)
+4*x*exp(x)^3-4*exp(x)^2*x^2),x, algorithm="giac")

[Out]

integrate(-4*(x*e^(2*x) - (x^2 + x + 1)*e^x + 2*x)/(4*x^2*e^(2*x) + (x^2 - x*e^x)*log(x^2)^2 + 4*(x^2 - x*e^x)
*log(x - e^x)^2 - 4*x*e^(3*x) - 4*(x^2*e^x - x*e^(2*x))*log(x^2) - 4*(2*x^2*e^x - 2*x*e^(2*x) - (x^2 - x*e^x)*
log(x^2))*log(x - e^x)), x)

________________________________________________________________________________________

maple [C]  time = 0.12, size = 71, normalized size = 2.96




method result size



risch 4iπcsgn(ix)2csgn(ix2)2πcsgn(ix)csgn(ix2)2+πcsgn(ix2)34iex+4iln(x)+4iln(xex) 71



Verification of antiderivative is not currently implemented for this CAS.

[In]

int((4*x*exp(x)^2+(-4*x^2-4*x-4)*exp(x)+8*x)/((4*exp(x)*x-4*x^2)*ln(x-exp(x))^2+((4*exp(x)*x-4*x^2)*ln(x^2)-8*
x*exp(x)^2+8*exp(x)*x^2)*ln(x-exp(x))+(exp(x)*x-x^2)*ln(x^2)^2+(-4*x*exp(x)^2+4*exp(x)*x^2)*ln(x^2)+4*x*exp(x)
^3-4*exp(x)^2*x^2),x,method=_RETURNVERBOSE)

[Out]

4*I/(Pi*csgn(I*x)^2*csgn(I*x^2)-2*Pi*csgn(I*x)*csgn(I*x^2)^2+Pi*csgn(I*x^2)^3-4*I*exp(x)+4*I*ln(x)+4*I*ln(x-ex
p(x)))

________________________________________________________________________________________

maxima [A]  time = 0.51, size = 20, normalized size = 0.83 1exlog(xex)log(x)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((4*x*exp(x)^2+(-4*x^2-4*x-4)*exp(x)+8*x)/((4*exp(x)*x-4*x^2)*log(x-exp(x))^2+((4*exp(x)*x-4*x^2)*log
(x^2)-8*x*exp(x)^2+8*exp(x)*x^2)*log(x-exp(x))+(exp(x)*x-x^2)*log(x^2)^2+(-4*x*exp(x)^2+4*exp(x)*x^2)*log(x^2)
+4*x*exp(x)^3-4*exp(x)^2*x^2),x, algorithm="maxima")

[Out]

-1/(e^x - log(x - e^x) - log(x))

________________________________________________________________________________________

mupad [B]  time = 3.25, size = 22, normalized size = 0.92 2ln(x2)+2ln(xex)2ex

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((8*x + 4*x*exp(2*x) - exp(x)*(4*x + 4*x^2 + 4))/(4*x*exp(3*x) - log(x^2)*(4*x*exp(2*x) - 4*x^2*exp(x)) + l
og(x^2)^2*(x*exp(x) - x^2) + log(x - exp(x))*(8*x^2*exp(x) - 8*x*exp(2*x) + log(x^2)*(4*x*exp(x) - 4*x^2)) - 4
*x^2*exp(2*x) + log(x - exp(x))^2*(4*x*exp(x) - 4*x^2)),x)

[Out]

2/(log(x^2) + 2*log(x - exp(x)) - 2*exp(x))

________________________________________________________________________________________

sympy [A]  time = 0.43, size = 19, normalized size = 0.79 22ex+log(x2)+2log(xex)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((4*x*exp(x)**2+(-4*x**2-4*x-4)*exp(x)+8*x)/((4*exp(x)*x-4*x**2)*ln(x-exp(x))**2+((4*exp(x)*x-4*x**2)
*ln(x**2)-8*x*exp(x)**2+8*exp(x)*x**2)*ln(x-exp(x))+(exp(x)*x-x**2)*ln(x**2)**2+(-4*x*exp(x)**2+4*exp(x)*x**2)
*ln(x**2)+4*x*exp(x)**3-4*exp(x)**2*x**2),x)

[Out]

2/(-2*exp(x) + log(x**2) + 2*log(x - exp(x)))

________________________________________________________________________________________