Optimal. Leaf size=19 \[ 4 x \left (1+\log \left (3 (3+2 x) \left (\frac {1}{x}+\log (2)\right )\right )\right ) \]
________________________________________________________________________________________
Rubi [B] time = 0.22, antiderivative size = 78, normalized size of antiderivative = 4.11, number of steps used = 8, number of rules used = 5, integrand size = 76, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.066, Rules used = {6688, 12, 142, 2523, 894} \begin {gather*} -4 x-\frac {4 \left (3 \log ^2(2)-\log (4)\right ) \log (x \log (2)+1)}{\log ^2(2) (2-\log (8))}+4 x \log \left (\frac {3 (2 x+3) (x \log (2)+1)}{x}\right )+\frac {4 x \log (16)}{\log (4)}-\frac {4 \log (x \log (2)+1)}{\log (2)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 142
Rule 894
Rule 2523
Rule 6688
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int 4 \left (\frac {x (2+\log (8)+x \log (16))}{(3+2 x) (1+x \log (2))}+\log \left (\frac {3 (3+2 x) (1+x \log (2))}{x}\right )\right ) \, dx\\ &=4 \int \left (\frac {x (2+\log (8)+x \log (16))}{(3+2 x) (1+x \log (2))}+\log \left (\frac {3 (3+2 x) (1+x \log (2))}{x}\right )\right ) \, dx\\ &=4 \int \frac {x (2+\log (8)+x \log (16))}{(3+2 x) (1+x \log (2))} \, dx+4 \int \log \left (\frac {3 (3+2 x) (1+x \log (2))}{x}\right ) \, dx\\ &=4 x \log \left (\frac {3 (3+2 x) (1+x \log (2))}{x}\right )-4 \int \frac {-3+x^2 \log (4)}{(3+2 x) (1+x \log (2))} \, dx+4 \int \left (\frac {\log (4)-\log (2) \log (8)}{\log (2) (1+x \log (2)) (-2+\log (8))}+\frac {\log (16)}{\log (4)}-\frac {3 (-4+\log (64))}{2 (3+2 x) (-2+\log (8))}\right ) \, dx\\ &=\frac {4 x \log (16)}{\log (4)}-\frac {3 (4-\log (64)) \log (3+2 x)}{2-\log (8)}-\frac {4 \log (1+x \log (2))}{\log (2)}+4 x \log \left (\frac {3 (3+2 x) (1+x \log (2))}{x}\right )-4 \int \left (1+\frac {-3 \log ^2(2)+\log (4)}{\log (2) (1+x \log (2)) (-2+\log (8))}-\frac {3 (-4+\log (64))}{2 (3+2 x) (-2+\log (8))}\right ) \, dx\\ &=-4 x+\frac {4 x \log (16)}{\log (4)}-\frac {4 \log (1+x \log (2))}{\log (2)}-\frac {4 \left (3 \log ^2(2)-\log (4)\right ) \log (1+x \log (2))}{\log ^2(2) (2-\log (8))}+4 x \log \left (\frac {3 (3+2 x) (1+x \log (2))}{x}\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [B] time = 0.12, size = 44, normalized size = 2.32 \begin {gather*} \frac {4 x \left (-\log (4)+\log (2) \log (8)+\log (2) (-2+\log (8)) \log \left (6+\frac {9}{x}+x \log (64)+\log (512)\right )\right )}{\log (2) (-2+\log (8))} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.54, size = 30, normalized size = 1.58 \begin {gather*} 4 \, x \log \left (\frac {3 \, {\left ({\left (2 \, x^{2} + 3 \, x\right )} \log \relax (2) + 2 \, x + 3\right )}}{x}\right ) + 4 \, x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.24, size = 30, normalized size = 1.58 \begin {gather*} 4 \, x \log \left (6 \, x^{2} \log \relax (2) + 9 \, x \log \relax (2) + 6 \, x + 9\right ) - 4 \, x \log \relax (x) + 4 \, x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.14, size = 30, normalized size = 1.58
method | result | size |
norman | \(4 x +4 x \ln \left (\frac {\left (6 x^{2}+9 x \right ) \ln \relax (2)+6 x +9}{x}\right )\) | \(30\) |
risch | \(4 x +4 x \ln \left (\frac {\left (6 x^{2}+9 x \right ) \ln \relax (2)+6 x +9}{x}\right )\) | \(30\) |
default | \(4 x +4 x \ln \relax (3)+4 x \ln \left (\frac {2 x^{2} \ln \relax (2)+3 x \ln \relax (2)+2 x +3}{x}\right )\) | \(35\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.51, size = 189, normalized size = 9.95 \begin {gather*} 4 \, {\left (\frac {2 \, x}{\log \relax (2)} + \frac {4 \, \log \left (x \log \relax (2) + 1\right )}{3 \, \log \relax (2)^{3} - 2 \, \log \relax (2)^{2}} - \frac {9 \, \log \left (2 \, x + 3\right )}{3 \, \log \relax (2) - 2}\right )} \log \relax (2) - 6 \, {\left (\frac {2 \, \log \left (x \log \relax (2) + 1\right )}{3 \, \log \relax (2)^{2} - 2 \, \log \relax (2)} - \frac {3 \, \log \left (2 \, x + 3\right )}{3 \, \log \relax (2) - 2}\right )} \log \relax (2) + \frac {2 \, {\left (2 \, x {\left (\log \relax (3) - 1\right )} \log \relax (2) - 2 \, x \log \relax (2) \log \relax (x) + 2 \, {\left (x \log \relax (2) + 1\right )} \log \left (x \log \relax (2) + 1\right ) + {\left (2 \, x \log \relax (2) + 3 \, \log \relax (2)\right )} \log \left (2 \, x + 3\right )\right )}}{\log \relax (2)} - \frac {8 \, \log \left (x \log \relax (2) + 1\right )}{3 \, \log \relax (2)^{2} - 2 \, \log \relax (2)} + \frac {12 \, \log \left (2 \, x + 3\right )}{3 \, \log \relax (2) - 2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.47, size = 27, normalized size = 1.42 \begin {gather*} 4\,x\,\left (\ln \left (\frac {6\,x+\ln \relax (2)\,\left (6\,x^2+9\,x\right )+9}{x}\right )+1\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.25, size = 26, normalized size = 1.37 \begin {gather*} 4 x \log {\left (\frac {6 x + \left (6 x^{2} + 9 x\right ) \log {\relax (2 )} + 9}{x} \right )} + 4 x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________