3.41.72
Optimal. Leaf size=19
________________________________________________________________________________________
Rubi [B] time = 0.22, antiderivative size = 78, normalized size of antiderivative = 4.11,
number of steps used = 8, number of rules used = 5, integrand size = 76, = 0.066, Rules used =
{6688, 12, 142, 2523, 894}
Antiderivative was successfully verified.
[In]
Int[(8*x + (12*x + 16*x^2)*Log[2] + (12 + 8*x + (12*x + 8*x^2)*Log[2])*Log[(9 + 6*x + (9*x + 6*x^2)*Log[2])/x]
)/(3 + 2*x + (3*x + 2*x^2)*Log[2]),x]
[Out]
-4*x + (4*x*Log[16])/Log[4] - (4*Log[1 + x*Log[2]])/Log[2] - (4*(3*Log[2]^2 - Log[4])*Log[1 + x*Log[2]])/(Log[
2]^2*(2 - Log[8])) + 4*x*Log[(3*(3 + 2*x)*(1 + x*Log[2]))/x]
Rule 12
Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] && !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]
Rule 142
Int[((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_.)*((e_) + (f_.)*(x_))*((g_.) + (h_.)*(x_)), x_Symbol]
:> Int[ExpandIntegrand[(a + b*x)^m*(c + d*x)^n*(e + f*x)*(g + h*x), x], x] /; FreeQ[{a, b, c, d, e, f, g, h},
x] && (IGtQ[m, 0] || IntegersQ[m, n])
Rule 894
Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))^(n_)*((a_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Int[ExpandIn
tegrand[(d + e*x)^m*(f + g*x)^n*(a + c*x^2)^p, x], x] /; FreeQ[{a, c, d, e, f, g}, x] && NeQ[e*f - d*g, 0] &&
NeQ[c*d^2 + a*e^2, 0] && IntegerQ[p] && ((EqQ[p, 1] && IntegersQ[m, n]) || (ILtQ[m, 0] && ILtQ[n, 0]))
Rule 2523
Int[((a_.) + Log[(c_.)*(RFx_)^(p_.)]*(b_.))^(n_.), x_Symbol] :> Simp[x*(a + b*Log[c*RFx^p])^n, x] - Dist[b*n*p
, Int[SimplifyIntegrand[(x*(a + b*Log[c*RFx^p])^(n - 1)*D[RFx, x])/RFx, x], x], x] /; FreeQ[{a, b, c, p}, x] &
& RationalFunctionQ[RFx, x] && IGtQ[n, 0]
Rule 6688
Int[u_, x_Symbol] :> With[{v = SimplifyIntegrand[u, x]}, Int[v, x] /; SimplerIntegrandQ[v, u, x]]
Rubi steps
________________________________________________________________________________________
Mathematica [B] time = 0.12, size = 44, normalized size = 2.32
Antiderivative was successfully verified.
[In]
Integrate[(8*x + (12*x + 16*x^2)*Log[2] + (12 + 8*x + (12*x + 8*x^2)*Log[2])*Log[(9 + 6*x + (9*x + 6*x^2)*Log[
2])/x])/(3 + 2*x + (3*x + 2*x^2)*Log[2]),x]
[Out]
(4*x*(-Log[4] + Log[2]*Log[8] + Log[2]*(-2 + Log[8])*Log[6 + 9/x + x*Log[64] + Log[512]]))/(Log[2]*(-2 + Log[8
]))
________________________________________________________________________________________
fricas [A] time = 0.54, size = 30, normalized size = 1.58
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate((((8*x^2+12*x)*log(2)+8*x+12)*log(((6*x^2+9*x)*log(2)+6*x+9)/x)+(16*x^2+12*x)*log(2)+8*x)/((2*x^2+3*
x)*log(2)+2*x+3),x, algorithm="fricas")
[Out]
4*x*log(3*((2*x^2 + 3*x)*log(2) + 2*x + 3)/x) + 4*x
________________________________________________________________________________________
giac [A] time = 0.24, size = 30, normalized size = 1.58
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate((((8*x^2+12*x)*log(2)+8*x+12)*log(((6*x^2+9*x)*log(2)+6*x+9)/x)+(16*x^2+12*x)*log(2)+8*x)/((2*x^2+3*
x)*log(2)+2*x+3),x, algorithm="giac")
[Out]
4*x*log(6*x^2*log(2) + 9*x*log(2) + 6*x + 9) - 4*x*log(x) + 4*x
________________________________________________________________________________________
maple [A] time = 0.14, size = 30, normalized size = 1.58
|
|
|
method |
result |
size |
|
|
|
norman |
|
|
risch |
|
|
default |
|
|
|
|
|
|
|
|
|
|
|
|
Verification of antiderivative is not currently implemented for this CAS.
[In]
int((((8*x^2+12*x)*ln(2)+8*x+12)*ln(((6*x^2+9*x)*ln(2)+6*x+9)/x)+(16*x^2+12*x)*ln(2)+8*x)/((2*x^2+3*x)*ln(2)+2
*x+3),x,method=_RETURNVERBOSE)
[Out]
4*x+4*x*ln(((6*x^2+9*x)*ln(2)+6*x+9)/x)
________________________________________________________________________________________
maxima [B] time = 0.51, size = 189, normalized size = 9.95
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate((((8*x^2+12*x)*log(2)+8*x+12)*log(((6*x^2+9*x)*log(2)+6*x+9)/x)+(16*x^2+12*x)*log(2)+8*x)/((2*x^2+3*
x)*log(2)+2*x+3),x, algorithm="maxima")
[Out]
4*(2*x/log(2) + 4*log(x*log(2) + 1)/(3*log(2)^3 - 2*log(2)^2) - 9*log(2*x + 3)/(3*log(2) - 2))*log(2) - 6*(2*l
og(x*log(2) + 1)/(3*log(2)^2 - 2*log(2)) - 3*log(2*x + 3)/(3*log(2) - 2))*log(2) + 2*(2*x*(log(3) - 1)*log(2)
- 2*x*log(2)*log(x) + 2*(x*log(2) + 1)*log(x*log(2) + 1) + (2*x*log(2) + 3*log(2))*log(2*x + 3))/log(2) - 8*lo
g(x*log(2) + 1)/(3*log(2)^2 - 2*log(2)) + 12*log(2*x + 3)/(3*log(2) - 2)
________________________________________________________________________________________
mupad [B] time = 3.47, size = 27, normalized size = 1.42
Verification of antiderivative is not currently implemented for this CAS.
[In]
int((8*x + log(2)*(12*x + 16*x^2) + log((6*x + log(2)*(9*x + 6*x^2) + 9)/x)*(8*x + log(2)*(12*x + 8*x^2) + 12)
)/(2*x + log(2)*(3*x + 2*x^2) + 3),x)
[Out]
4*x*(log((6*x + log(2)*(9*x + 6*x^2) + 9)/x) + 1)
________________________________________________________________________________________
sympy [A] time = 0.25, size = 26, normalized size = 1.37
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate((((8*x**2+12*x)*ln(2)+8*x+12)*ln(((6*x**2+9*x)*ln(2)+6*x+9)/x)+(16*x**2+12*x)*ln(2)+8*x)/((2*x**2+3*
x)*ln(2)+2*x+3),x)
[Out]
4*x*log((6*x + (6*x**2 + 9*x)*log(2) + 9)/x) + 4*x
________________________________________________________________________________________