3.41.72 8x+(12x+16x2)log(2)+(12+8x+(12x+8x2)log(2))log(9+6x+(9x+6x2)log(2)x)3+2x+(3x+2x2)log(2)dx

Optimal. Leaf size=19 4x(1+log(3(3+2x)(1x+log(2))))

________________________________________________________________________________________

Rubi [B]  time = 0.22, antiderivative size = 78, normalized size of antiderivative = 4.11, number of steps used = 8, number of rules used = 5, integrand size = 76, number of rulesintegrand size = 0.066, Rules used = {6688, 12, 142, 2523, 894} 4x4(3log2(2)log(4))log(xlog(2)+1)log2(2)(2log(8))+4xlog(3(2x+3)(xlog(2)+1)x)+4xlog(16)log(4)4log(xlog(2)+1)log(2)

Antiderivative was successfully verified.

[In]

Int[(8*x + (12*x + 16*x^2)*Log[2] + (12 + 8*x + (12*x + 8*x^2)*Log[2])*Log[(9 + 6*x + (9*x + 6*x^2)*Log[2])/x]
)/(3 + 2*x + (3*x + 2*x^2)*Log[2]),x]

[Out]

-4*x + (4*x*Log[16])/Log[4] - (4*Log[1 + x*Log[2]])/Log[2] - (4*(3*Log[2]^2 - Log[4])*Log[1 + x*Log[2]])/(Log[
2]^2*(2 - Log[8])) + 4*x*Log[(3*(3 + 2*x)*(1 + x*Log[2]))/x]

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 142

Int[((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_.)*((e_) + (f_.)*(x_))*((g_.) + (h_.)*(x_)), x_Symbol]
:> Int[ExpandIntegrand[(a + b*x)^m*(c + d*x)^n*(e + f*x)*(g + h*x), x], x] /; FreeQ[{a, b, c, d, e, f, g, h},
x] && (IGtQ[m, 0] || IntegersQ[m, n])

Rule 894

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))^(n_)*((a_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Int[ExpandIn
tegrand[(d + e*x)^m*(f + g*x)^n*(a + c*x^2)^p, x], x] /; FreeQ[{a, c, d, e, f, g}, x] && NeQ[e*f - d*g, 0] &&
NeQ[c*d^2 + a*e^2, 0] && IntegerQ[p] && ((EqQ[p, 1] && IntegersQ[m, n]) || (ILtQ[m, 0] && ILtQ[n, 0]))

Rule 2523

Int[((a_.) + Log[(c_.)*(RFx_)^(p_.)]*(b_.))^(n_.), x_Symbol] :> Simp[x*(a + b*Log[c*RFx^p])^n, x] - Dist[b*n*p
, Int[SimplifyIntegrand[(x*(a + b*Log[c*RFx^p])^(n - 1)*D[RFx, x])/RFx, x], x], x] /; FreeQ[{a, b, c, p}, x] &
& RationalFunctionQ[RFx, x] && IGtQ[n, 0]

Rule 6688

Int[u_, x_Symbol] :> With[{v = SimplifyIntegrand[u, x]}, Int[v, x] /; SimplerIntegrandQ[v, u, x]]

Rubi steps

integral=4(x(2+log(8)+xlog(16))(3+2x)(1+xlog(2))+log(3(3+2x)(1+xlog(2))x))dx=4(x(2+log(8)+xlog(16))(3+2x)(1+xlog(2))+log(3(3+2x)(1+xlog(2))x))dx=4x(2+log(8)+xlog(16))(3+2x)(1+xlog(2))dx+4log(3(3+2x)(1+xlog(2))x)dx=4xlog(3(3+2x)(1+xlog(2))x)43+x2log(4)(3+2x)(1+xlog(2))dx+4(log(4)log(2)log(8)log(2)(1+xlog(2))(2+log(8))+log(16)log(4)3(4+log(64))2(3+2x)(2+log(8)))dx=4xlog(16)log(4)3(4log(64))log(3+2x)2log(8)4log(1+xlog(2))log(2)+4xlog(3(3+2x)(1+xlog(2))x)4(1+3log2(2)+log(4)log(2)(1+xlog(2))(2+log(8))3(4+log(64))2(3+2x)(2+log(8)))dx=4x+4xlog(16)log(4)4log(1+xlog(2))log(2)4(3log2(2)log(4))log(1+xlog(2))log2(2)(2log(8))+4xlog(3(3+2x)(1+xlog(2))x)

________________________________________________________________________________________

Mathematica [B]  time = 0.12, size = 44, normalized size = 2.32 4x(log(4)+log(2)log(8)+log(2)(2+log(8))log(6+9x+xlog(64)+log(512)))log(2)(2+log(8))

Antiderivative was successfully verified.

[In]

Integrate[(8*x + (12*x + 16*x^2)*Log[2] + (12 + 8*x + (12*x + 8*x^2)*Log[2])*Log[(9 + 6*x + (9*x + 6*x^2)*Log[
2])/x])/(3 + 2*x + (3*x + 2*x^2)*Log[2]),x]

[Out]

(4*x*(-Log[4] + Log[2]*Log[8] + Log[2]*(-2 + Log[8])*Log[6 + 9/x + x*Log[64] + Log[512]]))/(Log[2]*(-2 + Log[8
]))

________________________________________________________________________________________

fricas [A]  time = 0.54, size = 30, normalized size = 1.58 4xlog(3((2x2+3x)log(2)+2x+3)x)+4x

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((((8*x^2+12*x)*log(2)+8*x+12)*log(((6*x^2+9*x)*log(2)+6*x+9)/x)+(16*x^2+12*x)*log(2)+8*x)/((2*x^2+3*
x)*log(2)+2*x+3),x, algorithm="fricas")

[Out]

4*x*log(3*((2*x^2 + 3*x)*log(2) + 2*x + 3)/x) + 4*x

________________________________________________________________________________________

giac [A]  time = 0.24, size = 30, normalized size = 1.58 4xlog(6x2log(2)+9xlog(2)+6x+9)4xlog(x)+4x

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((((8*x^2+12*x)*log(2)+8*x+12)*log(((6*x^2+9*x)*log(2)+6*x+9)/x)+(16*x^2+12*x)*log(2)+8*x)/((2*x^2+3*
x)*log(2)+2*x+3),x, algorithm="giac")

[Out]

4*x*log(6*x^2*log(2) + 9*x*log(2) + 6*x + 9) - 4*x*log(x) + 4*x

________________________________________________________________________________________

maple [A]  time = 0.14, size = 30, normalized size = 1.58




method result size



norman 4x+4xln((6x2+9x)ln(2)+6x+9x) 30
risch 4x+4xln((6x2+9x)ln(2)+6x+9x) 30
default 4x+4xln(3)+4xln(2x2ln(2)+3xln(2)+2x+3x) 35



Verification of antiderivative is not currently implemented for this CAS.

[In]

int((((8*x^2+12*x)*ln(2)+8*x+12)*ln(((6*x^2+9*x)*ln(2)+6*x+9)/x)+(16*x^2+12*x)*ln(2)+8*x)/((2*x^2+3*x)*ln(2)+2
*x+3),x,method=_RETURNVERBOSE)

[Out]

4*x+4*x*ln(((6*x^2+9*x)*ln(2)+6*x+9)/x)

________________________________________________________________________________________

maxima [B]  time = 0.51, size = 189, normalized size = 9.95 4(2xlog(2)+4log(xlog(2)+1)3log(2)32log(2)29log(2x+3)3log(2)2)log(2)6(2log(xlog(2)+1)3log(2)22log(2)3log(2x+3)3log(2)2)log(2)+2(2x(log(3)1)log(2)2xlog(2)log(x)+2(xlog(2)+1)log(xlog(2)+1)+(2xlog(2)+3log(2))log(2x+3))log(2)8log(xlog(2)+1)3log(2)22log(2)+12log(2x+3)3log(2)2

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((((8*x^2+12*x)*log(2)+8*x+12)*log(((6*x^2+9*x)*log(2)+6*x+9)/x)+(16*x^2+12*x)*log(2)+8*x)/((2*x^2+3*
x)*log(2)+2*x+3),x, algorithm="maxima")

[Out]

4*(2*x/log(2) + 4*log(x*log(2) + 1)/(3*log(2)^3 - 2*log(2)^2) - 9*log(2*x + 3)/(3*log(2) - 2))*log(2) - 6*(2*l
og(x*log(2) + 1)/(3*log(2)^2 - 2*log(2)) - 3*log(2*x + 3)/(3*log(2) - 2))*log(2) + 2*(2*x*(log(3) - 1)*log(2)
- 2*x*log(2)*log(x) + 2*(x*log(2) + 1)*log(x*log(2) + 1) + (2*x*log(2) + 3*log(2))*log(2*x + 3))/log(2) - 8*lo
g(x*log(2) + 1)/(3*log(2)^2 - 2*log(2)) + 12*log(2*x + 3)/(3*log(2) - 2)

________________________________________________________________________________________

mupad [B]  time = 3.47, size = 27, normalized size = 1.42 4x(ln(6x+ln(2)(6x2+9x)+9x)+1)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((8*x + log(2)*(12*x + 16*x^2) + log((6*x + log(2)*(9*x + 6*x^2) + 9)/x)*(8*x + log(2)*(12*x + 8*x^2) + 12)
)/(2*x + log(2)*(3*x + 2*x^2) + 3),x)

[Out]

4*x*(log((6*x + log(2)*(9*x + 6*x^2) + 9)/x) + 1)

________________________________________________________________________________________

sympy [A]  time = 0.25, size = 26, normalized size = 1.37 4xlog(6x+(6x2+9x)log(2)+9x)+4x

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((((8*x**2+12*x)*ln(2)+8*x+12)*ln(((6*x**2+9*x)*ln(2)+6*x+9)/x)+(16*x**2+12*x)*ln(2)+8*x)/((2*x**2+3*
x)*ln(2)+2*x+3),x)

[Out]

4*x*log((6*x + (6*x**2 + 9*x)*log(2) + 9)/x) + 4*x

________________________________________________________________________________________