3.41.90 (32x8e3x25e6x4+(46e3x2)log(x)log2(x))dx

Optimal. Leaf size=23 2x2x(1+e3x2+log(x))2

________________________________________________________________________________________

Rubi [B]  time = 0.03, antiderivative size = 52, normalized size of antiderivative = 2.26, number of steps used = 6, number of rules used = 4, integrand size = 40, number of rulesintegrand size = 0.100, Rules used = {2313, 12, 2296, 2295} e6x52e3x32(e3x3+2x)log(x)x2xxlog2(x)+2xlog(x)

Antiderivative was successfully verified.

[In]

Int[-3 - 2*x - 8*E^3*x^2 - 5*E^6*x^4 + (-4 - 6*E^3*x^2)*Log[x] - Log[x]^2,x]

[Out]

-x - x^2 - 2*E^3*x^3 - E^6*x^5 + 2*x*Log[x] - 2*(2*x + E^3*x^3)*Log[x] - x*Log[x]^2

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 2295

Int[Log[(c_.)*(x_)^(n_.)], x_Symbol] :> Simp[x*Log[c*x^n], x] - Simp[n*x, x] /; FreeQ[{c, n}, x]

Rule 2296

Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))^(p_.), x_Symbol] :> Simp[x*(a + b*Log[c*x^n])^p, x] - Dist[b*n*p, In
t[(a + b*Log[c*x^n])^(p - 1), x], x] /; FreeQ[{a, b, c, n}, x] && GtQ[p, 0] && IntegerQ[2*p]

Rule 2313

Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))*((d_) + (e_.)*(x_)^(r_.))^(q_.), x_Symbol] :> With[{u = IntHide[(d +
 e*x^r)^q, x]}, Simp[u*(a + b*Log[c*x^n]), x] - Dist[b*n, Int[SimplifyIntegrand[u/x, x], x], x]] /; FreeQ[{a,
b, c, d, e, n, r}, x] && IGtQ[q, 0]

Rubi steps

integral=3xx28e3x33e6x5+(46e3x2)log(x)dxlog2(x)dx=3xx28e3x33e6x52(2x+e3x3)log(x)xlog2(x)+2log(x)dx2(2e3x2)dx=5xx28e3x33e6x5+2xlog(x)2(2x+e3x3)log(x)xlog2(x)2(2e3x2)dx=xx22e3x3e6x5+2xlog(x)2(2x+e3x3)log(x)xlog2(x)

________________________________________________________________________________________

Mathematica [B]  time = 0.01, size = 47, normalized size = 2.04 xx22e3x3e6x52xlog(x)2e3x3log(x)xlog2(x)

Antiderivative was successfully verified.

[In]

Integrate[-3 - 2*x - 8*E^3*x^2 - 5*E^6*x^4 + (-4 - 6*E^3*x^2)*Log[x] - Log[x]^2,x]

[Out]

-x - x^2 - 2*E^3*x^3 - E^6*x^5 - 2*x*Log[x] - 2*E^3*x^3*Log[x] - x*Log[x]^2

________________________________________________________________________________________

fricas [A]  time = 0.70, size = 42, normalized size = 1.83 x5e62x3e3xlog(x)2x22(x3e3+x)log(x)x

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(-log(x)^2+(-6*x^2*exp(3)-4)*log(x)-5*x^4*exp(3)^2-8*x^2*exp(3)-2*x-3,x, algorithm="fricas")

[Out]

-x^5*e^6 - 2*x^3*e^3 - x*log(x)^2 - x^2 - 2*(x^3*e^3 + x)*log(x) - x

________________________________________________________________________________________

giac [A]  time = 0.22, size = 44, normalized size = 1.91 x5e62x3e3log(x)2x3e3xlog(x)2x22xlog(x)x

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(-log(x)^2+(-6*x^2*exp(3)-4)*log(x)-5*x^4*exp(3)^2-8*x^2*exp(3)-2*x-3,x, algorithm="giac")

[Out]

-x^5*e^6 - 2*x^3*e^3*log(x) - 2*x^3*e^3 - x*log(x)^2 - x^2 - 2*x*log(x) - x

________________________________________________________________________________________

maple [A]  time = 0.03, size = 45, normalized size = 1.96




method result size



risch x2e3ln(x)x32x3e32xln(x)x2xln(x)2x5e6 45
default x2e3ln(x)x32x3e32xln(x)x2xln(x)2x5e6 47
norman x2e3ln(x)x32x3e32xln(x)x2xln(x)2x5e6 47



Verification of antiderivative is not currently implemented for this CAS.

[In]

int(-ln(x)^2+(-6*x^2*exp(3)-4)*ln(x)-5*x^4*exp(3)^2-8*x^2*exp(3)-2*x-3,x,method=_RETURNVERBOSE)

[Out]

-x-2*exp(3)*ln(x)*x^3-2*x^3*exp(3)-2*x*ln(x)-x^2-x*ln(x)^2-x^5*exp(6)

________________________________________________________________________________________

maxima [B]  time = 0.38, size = 48, normalized size = 2.09 x5e62x3e3(log(x)22log(x)+2)xx22(x3e3+2x)log(x)+x

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(-log(x)^2+(-6*x^2*exp(3)-4)*log(x)-5*x^4*exp(3)^2-8*x^2*exp(3)-2*x-3,x, algorithm="maxima")

[Out]

-x^5*e^6 - 2*x^3*e^3 - (log(x)^2 - 2*log(x) + 2)*x - x^2 - 2*(x^3*e^3 + 2*x)*log(x) + x

________________________________________________________________________________________

mupad [B]  time = 3.11, size = 36, normalized size = 1.57 x(e6x4+2e3x2ln(x)+2e3x2+x+ln(x)2+2ln(x)+1)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(- 2*x - log(x)*(6*x^2*exp(3) + 4) - log(x)^2 - 8*x^2*exp(3) - 5*x^4*exp(6) - 3,x)

[Out]

-x*(x + 2*log(x) + log(x)^2 + 2*x^2*exp(3) + x^4*exp(6) + 2*x^2*exp(3)*log(x) + 1)

________________________________________________________________________________________

sympy [B]  time = 0.13, size = 42, normalized size = 1.83 x5e62x3e3x2xlog(x)2x+(2x3e32x)log(x)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(-ln(x)**2+(-6*x**2*exp(3)-4)*ln(x)-5*x**4*exp(3)**2-8*x**2*exp(3)-2*x-3,x)

[Out]

-x**5*exp(6) - 2*x**3*exp(3) - x**2 - x*log(x)**2 - x + (-2*x**3*exp(3) - 2*x)*log(x)

________________________________________________________________________________________