Optimal. Leaf size=31 \[ x+5 \left (x+\log \left (\log \left (-5 x+\log \left (2-\frac {e^{-e^{2 x}} \log (4)}{x}\right )\right )\right )\right ) \]
________________________________________________________________________________________
Rubi [F] time = 18.93, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-50 e^{e^{2 x}} x^2+10 e^{2 x} x \log (4)+(5+25 x) \log (4)+\left (-60 e^{e^{2 x}} x^3+30 x^2 \log (4)+\left (12 e^{e^{2 x}} x^2-6 x \log (4)\right ) \log \left (\frac {e^{-e^{2 x}} \left (2 e^{e^{2 x}} x-\log (4)\right )}{x}\right )\right ) \log \left (-5 x+\log \left (\frac {e^{-e^{2 x}} \left (2 e^{e^{2 x}} x-\log (4)\right )}{x}\right )\right )}{\left (-10 e^{e^{2 x}} x^3+5 x^2 \log (4)+\left (2 e^{e^{2 x}} x^2-x \log (4)\right ) \log \left (\frac {e^{-e^{2 x}} \left (2 e^{e^{2 x}} x-\log (4)\right )}{x}\right )\right ) \log \left (-5 x+\log \left (\frac {e^{-e^{2 x}} \left (2 e^{e^{2 x}} x-\log (4)\right )}{x}\right )\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {50 e^{e^{2 x}} x^2-10 e^{2 x} x \log (4)-5 (1+5 x) \log (4)+6 x \left (2 e^{e^{2 x}} x-\log (4)\right ) \left (5 x-\log \left (2-\frac {e^{-e^{2 x}} \log (4)}{x}\right )\right ) \log \left (-5 x+\log \left (2-\frac {e^{-e^{2 x}} \log (4)}{x}\right )\right )}{x \left (2 e^{e^{2 x}} x-\log (4)\right ) \left (5 x-\log \left (2-\frac {e^{-e^{2 x}} \log (4)}{x}\right )\right ) \log \left (-5 x+\log \left (2-\frac {e^{-e^{2 x}} \log (4)}{x}\right )\right )} \, dx\\ &=\int \left (-\frac {10 e^{2 x} \log (4)}{\left (2 e^{e^{2 x}} x-\log (4)\right ) \left (5 x-\log \left (2-\frac {e^{-e^{2 x}} \log (4)}{x}\right )\right ) \log \left (-5 x+\log \left (2-\frac {e^{-e^{2 x}} \log (4)}{x}\right )\right )}+\frac {50 e^{e^{2 x}} x^2-5 \log (4)-25 x \log (4)+60 e^{e^{2 x}} x^3 \log \left (-5 x+\log \left (2-\frac {e^{-e^{2 x}} \log (4)}{x}\right )\right )-30 x^2 \log (4) \log \left (-5 x+\log \left (2-\frac {e^{-e^{2 x}} \log (4)}{x}\right )\right )-12 e^{e^{2 x}} x^2 \log \left (2-\frac {e^{-e^{2 x}} \log (4)}{x}\right ) \log \left (-5 x+\log \left (2-\frac {e^{-e^{2 x}} \log (4)}{x}\right )\right )+6 x \log (4) \log \left (2-\frac {e^{-e^{2 x}} \log (4)}{x}\right ) \log \left (-5 x+\log \left (2-\frac {e^{-e^{2 x}} \log (4)}{x}\right )\right )}{x \left (2 e^{e^{2 x}} x-\log (4)\right ) \left (5 x-\log \left (2-\frac {e^{-e^{2 x}} \log (4)}{x}\right )\right ) \log \left (-5 x+\log \left (2-\frac {e^{-e^{2 x}} \log (4)}{x}\right )\right )}\right ) \, dx\\ &=-\left ((10 \log (4)) \int \frac {e^{2 x}}{\left (2 e^{e^{2 x}} x-\log (4)\right ) \left (5 x-\log \left (2-\frac {e^{-e^{2 x}} \log (4)}{x}\right )\right ) \log \left (-5 x+\log \left (2-\frac {e^{-e^{2 x}} \log (4)}{x}\right )\right )} \, dx\right )+\int \frac {50 e^{e^{2 x}} x^2-5 \log (4)-25 x \log (4)+60 e^{e^{2 x}} x^3 \log \left (-5 x+\log \left (2-\frac {e^{-e^{2 x}} \log (4)}{x}\right )\right )-30 x^2 \log (4) \log \left (-5 x+\log \left (2-\frac {e^{-e^{2 x}} \log (4)}{x}\right )\right )-12 e^{e^{2 x}} x^2 \log \left (2-\frac {e^{-e^{2 x}} \log (4)}{x}\right ) \log \left (-5 x+\log \left (2-\frac {e^{-e^{2 x}} \log (4)}{x}\right )\right )+6 x \log (4) \log \left (2-\frac {e^{-e^{2 x}} \log (4)}{x}\right ) \log \left (-5 x+\log \left (2-\frac {e^{-e^{2 x}} \log (4)}{x}\right )\right )}{x \left (2 e^{e^{2 x}} x-\log (4)\right ) \left (5 x-\log \left (2-\frac {e^{-e^{2 x}} \log (4)}{x}\right )\right ) \log \left (-5 x+\log \left (2-\frac {e^{-e^{2 x}} \log (4)}{x}\right )\right )} \, dx\\ &=-\left ((10 \log (4)) \int \frac {e^{2 x}}{\left (2 e^{e^{2 x}} x-\log (4)\right ) \left (5 x-\log \left (2-\frac {e^{-e^{2 x}} \log (4)}{x}\right )\right ) \log \left (-5 x+\log \left (2-\frac {e^{-e^{2 x}} \log (4)}{x}\right )\right )} \, dx\right )+\int \frac {50 e^{e^{2 x}} x^2-5 (1+5 x) \log (4)+6 x \left (2 e^{e^{2 x}} x-\log (4)\right ) \left (5 x-\log \left (2-\frac {e^{-e^{2 x}} \log (4)}{x}\right )\right ) \log \left (-5 x+\log \left (2-\frac {e^{-e^{2 x}} \log (4)}{x}\right )\right )}{x \left (2 e^{e^{2 x}} x-\log (4)\right ) \left (5 x-\log \left (2-\frac {e^{-e^{2 x}} \log (4)}{x}\right )\right ) \log \left (-5 x+\log \left (2-\frac {e^{-e^{2 x}} \log (4)}{x}\right )\right )} \, dx\\ &=-\left ((10 \log (4)) \int \frac {e^{2 x}}{\left (2 e^{e^{2 x}} x-\log (4)\right ) \left (5 x-\log \left (2-\frac {e^{-e^{2 x}} \log (4)}{x}\right )\right ) \log \left (-5 x+\log \left (2-\frac {e^{-e^{2 x}} \log (4)}{x}\right )\right )} \, dx\right )+\int \left (-\frac {5 \log (4)}{x \left (2 e^{e^{2 x}} x-\log (4)\right ) \left (5 x-\log \left (2-\frac {e^{-e^{2 x}} \log (4)}{x}\right )\right ) \log \left (-5 x+\log \left (2-\frac {e^{-e^{2 x}} \log (4)}{x}\right )\right )}+\frac {25+30 x \log \left (-5 x+\log \left (2-\frac {e^{-e^{2 x}} \log (4)}{x}\right )\right )-6 \log \left (2-\frac {e^{-e^{2 x}} \log (4)}{x}\right ) \log \left (-5 x+\log \left (2-\frac {e^{-e^{2 x}} \log (4)}{x}\right )\right )}{\left (5 x-\log \left (2-\frac {e^{-e^{2 x}} \log (4)}{x}\right )\right ) \log \left (-5 x+\log \left (2-\frac {e^{-e^{2 x}} \log (4)}{x}\right )\right )}\right ) \, dx\\ &=-\left ((5 \log (4)) \int \frac {1}{x \left (2 e^{e^{2 x}} x-\log (4)\right ) \left (5 x-\log \left (2-\frac {e^{-e^{2 x}} \log (4)}{x}\right )\right ) \log \left (-5 x+\log \left (2-\frac {e^{-e^{2 x}} \log (4)}{x}\right )\right )} \, dx\right )-(10 \log (4)) \int \frac {e^{2 x}}{\left (2 e^{e^{2 x}} x-\log (4)\right ) \left (5 x-\log \left (2-\frac {e^{-e^{2 x}} \log (4)}{x}\right )\right ) \log \left (-5 x+\log \left (2-\frac {e^{-e^{2 x}} \log (4)}{x}\right )\right )} \, dx+\int \frac {25+30 x \log \left (-5 x+\log \left (2-\frac {e^{-e^{2 x}} \log (4)}{x}\right )\right )-6 \log \left (2-\frac {e^{-e^{2 x}} \log (4)}{x}\right ) \log \left (-5 x+\log \left (2-\frac {e^{-e^{2 x}} \log (4)}{x}\right )\right )}{\left (5 x-\log \left (2-\frac {e^{-e^{2 x}} \log (4)}{x}\right )\right ) \log \left (-5 x+\log \left (2-\frac {e^{-e^{2 x}} \log (4)}{x}\right )\right )} \, dx\\ &=-\left ((5 \log (4)) \int \frac {1}{x \left (2 e^{e^{2 x}} x-\log (4)\right ) \left (5 x-\log \left (2-\frac {e^{-e^{2 x}} \log (4)}{x}\right )\right ) \log \left (-5 x+\log \left (2-\frac {e^{-e^{2 x}} \log (4)}{x}\right )\right )} \, dx\right )-(10 \log (4)) \int \frac {e^{2 x}}{\left (2 e^{e^{2 x}} x-\log (4)\right ) \left (5 x-\log \left (2-\frac {e^{-e^{2 x}} \log (4)}{x}\right )\right ) \log \left (-5 x+\log \left (2-\frac {e^{-e^{2 x}} \log (4)}{x}\right )\right )} \, dx+\int \left (6+\frac {25}{\left (5 x-\log \left (2-\frac {e^{-e^{2 x}} \log (4)}{x}\right )\right ) \log \left (-5 x+\log \left (2-\frac {e^{-e^{2 x}} \log (4)}{x}\right )\right )}\right ) \, dx\\ &=6 x+25 \int \frac {1}{\left (5 x-\log \left (2-\frac {e^{-e^{2 x}} \log (4)}{x}\right )\right ) \log \left (-5 x+\log \left (2-\frac {e^{-e^{2 x}} \log (4)}{x}\right )\right )} \, dx-(5 \log (4)) \int \frac {1}{x \left (2 e^{e^{2 x}} x-\log (4)\right ) \left (5 x-\log \left (2-\frac {e^{-e^{2 x}} \log (4)}{x}\right )\right ) \log \left (-5 x+\log \left (2-\frac {e^{-e^{2 x}} \log (4)}{x}\right )\right )} \, dx-(10 \log (4)) \int \frac {e^{2 x}}{\left (2 e^{e^{2 x}} x-\log (4)\right ) \left (5 x-\log \left (2-\frac {e^{-e^{2 x}} \log (4)}{x}\right )\right ) \log \left (-5 x+\log \left (2-\frac {e^{-e^{2 x}} \log (4)}{x}\right )\right )} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.21, size = 31, normalized size = 1.00 \begin {gather*} 6 x+5 \log \left (\log \left (-5 x+\log \left (2-\frac {e^{-e^{2 x}} \log (4)}{x}\right )\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.80, size = 37, normalized size = 1.19 \begin {gather*} 6 \, x + 5 \, \log \left (\log \left (-5 \, x + \log \left (\frac {2 \, {\left (x e^{\left (e^{\left (2 \, x\right )}\right )} - \log \relax (2)\right )} e^{\left (-e^{\left (2 \, x\right )}\right )}}{x}\right )\right )\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.71, size = 39, normalized size = 1.26 \begin {gather*} 6 \, x + 5 \, \log \left (\log \left (-5 \, x + \log \relax (2) + \log \left ({\left (x e^{\left (e^{\left (2 \, x\right )}\right )} - \log \relax (2)\right )} e^{\left (-e^{\left (2 \, x\right )}\right )}\right ) - \log \relax (x)\right )\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [C] time = 0.62, size = 317, normalized size = 10.23
method | result | size |
risch | \(6 x +5 \ln \left (\ln \left (\ln \relax (2)+i \pi -\ln \relax (x )-\ln \left ({\mathrm e}^{{\mathrm e}^{2 x}}\right )+\ln \left (-x \,{\mathrm e}^{{\mathrm e}^{2 x}}+\ln \relax (2)\right )-\frac {i \pi \,\mathrm {csgn}\left (i {\mathrm e}^{-{\mathrm e}^{2 x}} \left (-x \,{\mathrm e}^{{\mathrm e}^{2 x}}+\ln \relax (2)\right )\right ) \left (-\mathrm {csgn}\left (i {\mathrm e}^{-{\mathrm e}^{2 x}} \left (-x \,{\mathrm e}^{{\mathrm e}^{2 x}}+\ln \relax (2)\right )\right )+\mathrm {csgn}\left (i {\mathrm e}^{-{\mathrm e}^{2 x}}\right )\right ) \left (-\mathrm {csgn}\left (i {\mathrm e}^{-{\mathrm e}^{2 x}} \left (-x \,{\mathrm e}^{{\mathrm e}^{2 x}}+\ln \relax (2)\right )\right )+\mathrm {csgn}\left (i \left (-x \,{\mathrm e}^{{\mathrm e}^{2 x}}+\ln \relax (2)\right )\right )\right )}{2}-\frac {i \pi \,\mathrm {csgn}\left (\frac {i \left (-x \,{\mathrm e}^{{\mathrm e}^{2 x}}+\ln \relax (2)\right ) {\mathrm e}^{-{\mathrm e}^{2 x}}}{x}\right ) \left (-\mathrm {csgn}\left (\frac {i \left (-x \,{\mathrm e}^{{\mathrm e}^{2 x}}+\ln \relax (2)\right ) {\mathrm e}^{-{\mathrm e}^{2 x}}}{x}\right )+\mathrm {csgn}\left (\frac {i}{x}\right )\right ) \left (-\mathrm {csgn}\left (\frac {i \left (-x \,{\mathrm e}^{{\mathrm e}^{2 x}}+\ln \relax (2)\right ) {\mathrm e}^{-{\mathrm e}^{2 x}}}{x}\right )+\mathrm {csgn}\left (i {\mathrm e}^{-{\mathrm e}^{2 x}} \left (-x \,{\mathrm e}^{{\mathrm e}^{2 x}}+\ln \relax (2)\right )\right )\right )}{2}+i \pi \mathrm {csgn}\left (\frac {i \left (-x \,{\mathrm e}^{{\mathrm e}^{2 x}}+\ln \relax (2)\right ) {\mathrm e}^{-{\mathrm e}^{2 x}}}{x}\right )^{2} \left (\mathrm {csgn}\left (\frac {i \left (-x \,{\mathrm e}^{{\mathrm e}^{2 x}}+\ln \relax (2)\right ) {\mathrm e}^{-{\mathrm e}^{2 x}}}{x}\right )-1\right )-5 x \right )\right )\) | \(317\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.74, size = 37, normalized size = 1.19 \begin {gather*} 6 \, x + 5 \, \log \left (\log \left (-5 \, x - e^{\left (2 \, x\right )} + \log \relax (2) + \log \left (x e^{\left (e^{\left (2 \, x\right )}\right )} - \log \relax (2)\right ) - \log \relax (x)\right )\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.68, size = 32, normalized size = 1.03 \begin {gather*} 6\,x+5\,\ln \left (\ln \left (\ln \left (\frac {2\,x-2\,{\mathrm {e}}^{-{\mathrm {e}}^{2\,x}}\,\ln \relax (2)}{x}\right )-5\,x\right )\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [F(-1)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________