Optimal. Leaf size=21 \[ \log (5)+\log \left (\frac {1}{-e^x-x+\log \left (\frac {103}{5}\right )+\log (x)}\right ) \]
________________________________________________________________________________________
Rubi [F] time = 0.87, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-1+x+e^x x}{-e^x x-x^2+x \log \left (\frac {103}{5}\right )+x \log (x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (-1+\frac {1+x^2-x \left (1+\log \left (\frac {103}{5}\right )\right )-x \log (x)}{x \left (e^x+x-\log \left (\frac {103 x}{5}\right )\right )}\right ) \, dx\\ &=-x+\int \frac {1+x^2-x \left (1+\log \left (\frac {103}{5}\right )\right )-x \log (x)}{x \left (e^x+x-\log \left (\frac {103 x}{5}\right )\right )} \, dx\\ &=-x+\int \left (\frac {1}{x \left (e^x+x-\log \left (\frac {103 x}{5}\right )\right )}+\frac {x}{e^x+x-\log \left (\frac {103 x}{5}\right )}-\frac {1+\log \left (\frac {103}{5}\right )}{e^x+x-\log \left (\frac {103 x}{5}\right )}-\frac {\log (x)}{e^x+x-\log \left (\frac {103 x}{5}\right )}\right ) \, dx\\ &=-x+\left (-1-\log \left (\frac {103}{5}\right )\right ) \int \frac {1}{e^x+x-\log \left (\frac {103 x}{5}\right )} \, dx+\int \frac {1}{x \left (e^x+x-\log \left (\frac {103 x}{5}\right )\right )} \, dx+\int \frac {x}{e^x+x-\log \left (\frac {103 x}{5}\right )} \, dx-\int \frac {\log (x)}{e^x+x-\log \left (\frac {103 x}{5}\right )} \, dx\\ &=-x-5 \operatorname {Subst}\left (\int \frac {\log (5 x)}{e^{5 x}+5 x-\log (103 x)} \, dx,x,\frac {x}{5}\right )-\left (5 \left (1+\log \left (\frac {103}{5}\right )\right )\right ) \operatorname {Subst}\left (\int \frac {1}{e^{5 x}+5 x-\log (103 x)} \, dx,x,\frac {x}{5}\right )+\int \frac {1}{x \left (e^x+x-\log \left (\frac {103 x}{5}\right )\right )} \, dx+\int \frac {x}{e^x+x-\log \left (\frac {103 x}{5}\right )} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.15, size = 16, normalized size = 0.76 \begin {gather*} -\log \left (e^x+x-\log \left (\frac {103 x}{5}\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.83, size = 15, normalized size = 0.71 \begin {gather*} -\log \left (-x - e^{x} + \log \left (\frac {103}{5}\right ) + \log \relax (x)\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.18, size = 19, normalized size = 0.90 \begin {gather*} -\log \left (-x - e^{x} + \log \left (103\right ) - \log \relax (5) + \log \relax (x)\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.07, size = 16, normalized size = 0.76
method | result | size |
norman | \(-\ln \left (\ln \left (\frac {103}{5}\right )-{\mathrm e}^{x}-x +\ln \relax (x )\right )\) | \(16\) |
risch | \(-\ln \left (\ln \relax (x )-{\mathrm e}^{x}+\ln \left (103\right )-\ln \relax (5)-x \right )\) | \(20\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.49, size = 17, normalized size = 0.81 \begin {gather*} -\log \left (x + e^{x} - \log \left (103\right ) + \log \relax (5) - \log \relax (x)\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.26, size = 13, normalized size = 0.62 \begin {gather*} -\ln \left (x-\ln \left (\frac {103\,x}{5}\right )+{\mathrm {e}}^x\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.31, size = 17, normalized size = 0.81 \begin {gather*} - \log {\left (x + e^{x} - \log {\relax (x )} - \log {\left (103 \right )} + \log {\relax (5 )} \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________