Optimal. Leaf size=21 \[ -3-\log (-5+x)+60 \left (-5+\log \left (\log \left ((1+32 x)^2\right )\right )\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.16, antiderivative size = 20, normalized size of antiderivative = 0.95, number of steps used = 5, number of rules used = 4, integrand size = 48, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.083, Rules used = {6728, 2390, 2302, 29} \begin {gather*} 60 \log \left (\log \left ((32 x+1)^2\right )\right )-\log (5-x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 29
Rule 2302
Rule 2390
Rule 6728
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (\frac {1}{5-x}+\frac {3840}{(1+32 x) \log \left ((1+32 x)^2\right )}\right ) \, dx\\ &=-\log (5-x)+3840 \int \frac {1}{(1+32 x) \log \left ((1+32 x)^2\right )} \, dx\\ &=-\log (5-x)+120 \operatorname {Subst}\left (\int \frac {1}{x \log \left (x^2\right )} \, dx,x,1+32 x\right )\\ &=-\log (5-x)+60 \operatorname {Subst}\left (\int \frac {1}{x} \, dx,x,\log \left ((1+32 x)^2\right )\right )\\ &=-\log (5-x)+60 \log \left (\log \left ((1+32 x)^2\right )\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.10, size = 20, normalized size = 0.95 \begin {gather*} -\log (160-32 x)+60 \log \left (\log \left ((1+32 x)^2\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.57, size = 21, normalized size = 1.00 \begin {gather*} -\log \left (x - 5\right ) + 60 \, \log \left (\log \left (1024 \, x^{2} + 64 \, x + 1\right )\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.29, size = 21, normalized size = 1.00 \begin {gather*} -\log \left (x - 5\right ) + 60 \, \log \left (\log \left (1024 \, x^{2} + 64 \, x + 1\right )\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.10, size = 22, normalized size = 1.05
method | result | size |
default | \(-\ln \left (x -5\right )+60 \ln \left (\ln \left (1024 x^{2}+64 x +1\right )\right )\) | \(22\) |
norman | \(-\ln \left (x -5\right )+60 \ln \left (\ln \left (1024 x^{2}+64 x +1\right )\right )\) | \(22\) |
risch | \(-\ln \left (x -5\right )+60 \ln \left (\ln \left (1024 x^{2}+64 x +1\right )\right )\) | \(22\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.40, size = 16, normalized size = 0.76 \begin {gather*} -\log \left (x - 5\right ) + 60 \, \log \left (\log \left (32 \, x + 1\right )\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.29, size = 21, normalized size = 1.00 \begin {gather*} 60\,\ln \left (\ln \left (1024\,x^2+64\,x+1\right )\right )-\ln \left (x-5\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.13, size = 19, normalized size = 0.90 \begin {gather*} - \log {\left (x - 5 \right )} + 60 \log {\left (\log {\left (1024 x^{2} + 64 x + 1 \right )} \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________