Optimal. Leaf size=20 \[ -255-\frac {4 x}{3}+\log \left (x-3 \log \left (3+(-3+x)^2\right )\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.36, antiderivative size = 20, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 4, integrand size = 72, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.056, Rules used = {6741, 12, 6728, 6684} \begin {gather*} \log \left (x-3 \log \left (x^2-6 x+12\right )\right )-\frac {4 x}{3} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 6684
Rule 6728
Rule 6741
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {90-84 x+27 x^2-4 x^3-\left (-144+72 x-12 x^2\right ) \log \left (12-6 x+x^2\right )}{3 \left (12-6 x+x^2\right ) \left (x-3 \log \left (12-6 x+x^2\right )\right )} \, dx\\ &=\frac {1}{3} \int \frac {90-84 x+27 x^2-4 x^3-\left (-144+72 x-12 x^2\right ) \log \left (12-6 x+x^2\right )}{\left (12-6 x+x^2\right ) \left (x-3 \log \left (12-6 x+x^2\right )\right )} \, dx\\ &=\frac {1}{3} \int \left (-4+\frac {3 \left (30-12 x+x^2\right )}{\left (12-6 x+x^2\right ) \left (x-3 \log \left (12-6 x+x^2\right )\right )}\right ) \, dx\\ &=-\frac {4 x}{3}+\int \frac {30-12 x+x^2}{\left (12-6 x+x^2\right ) \left (x-3 \log \left (12-6 x+x^2\right )\right )} \, dx\\ &=-\frac {4 x}{3}+\log \left (x-3 \log \left (12-6 x+x^2\right )\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.64, size = 24, normalized size = 1.20 \begin {gather*} \frac {1}{3} \left (-4 x+3 \log \left (x-3 \log \left (12-6 x+x^2\right )\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.75, size = 20, normalized size = 1.00 \begin {gather*} -\frac {4}{3} \, x + \log \left (-x + 3 \, \log \left (x^{2} - 6 \, x + 12\right )\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 1.32, size = 18, normalized size = 0.90 \begin {gather*} -\frac {4}{3} \, x + \log \left (x - 3 \, \log \left (x^{2} - 6 \, x + 12\right )\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.03, size = 19, normalized size = 0.95
method | result | size |
norman | \(-\frac {4 x}{3}+\ln \left (x -3 \ln \left (x^{2}-6 x +12\right )\right )\) | \(19\) |
risch | \(-\frac {4 x}{3}+\ln \left (\ln \left (x^{2}-6 x +12\right )-\frac {x}{3}\right )\) | \(19\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.40, size = 18, normalized size = 0.90 \begin {gather*} -\frac {4}{3} \, x + \log \left (-\frac {1}{3} \, x + \log \left (x^{2} - 6 \, x + 12\right )\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.31, size = 18, normalized size = 0.90 \begin {gather*} \ln \left (\ln \left (x^2-6\,x+12\right )-\frac {x}{3}\right )-\frac {4\,x}{3} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.27, size = 19, normalized size = 0.95 \begin {gather*} - \frac {4 x}{3} + \log {\left (- \frac {x}{3} + \log {\left (x^{2} - 6 x + 12 \right )} \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________