Optimal. Leaf size=26 \[ 5 x \left (\frac {e^{3+x}}{3}-x-\frac {-2+x^2}{x}\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.02, antiderivative size = 27, normalized size of antiderivative = 1.04, number of steps used = 4, number of rules used = 3, integrand size = 19, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.158, Rules used = {12, 2176, 2194} \begin {gather*} -10 x^2-\frac {5 e^{x+3}}{3}+\frac {5}{3} e^{x+3} (x+1) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 2176
Rule 2194
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{3} \int \left (-60 x+e^{3+x} (5+5 x)\right ) \, dx\\ &=-10 x^2+\frac {1}{3} \int e^{3+x} (5+5 x) \, dx\\ &=-10 x^2+\frac {5}{3} e^{3+x} (1+x)-\frac {5}{3} \int e^{3+x} \, dx\\ &=-\frac {5 e^{3+x}}{3}-10 x^2+\frac {5}{3} e^{3+x} (1+x)\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.01, size = 16, normalized size = 0.62 \begin {gather*} \frac {5}{3} e^{3+x} x-10 x^2 \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.79, size = 13, normalized size = 0.50 \begin {gather*} -10 \, x^{2} + \frac {5}{3} \, x e^{\left (x + 3\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.28, size = 13, normalized size = 0.50 \begin {gather*} -10 \, x^{2} + \frac {5}{3} \, x e^{\left (x + 3\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.03, size = 14, normalized size = 0.54
method | result | size |
norman | \(-10 x^{2}+\frac {5 \,{\mathrm e}^{3+x} x}{3}\) | \(14\) |
risch | \(-10 x^{2}+\frac {5 \,{\mathrm e}^{3+x} x}{3}\) | \(14\) |
default | \(-10 x^{2}+\frac {5 \,{\mathrm e}^{3+x} \left (3+x \right )}{3}-5 \,{\mathrm e}^{3+x}\) | \(22\) |
derivativedivides | \(-10 \left (3+x \right )^{2}+180+60 x +\frac {5 \,{\mathrm e}^{3+x} \left (3+x \right )}{3}-5 \,{\mathrm e}^{3+x}\) | \(28\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.34, size = 25, normalized size = 0.96 \begin {gather*} -10 \, x^{2} + \frac {5}{3} \, {\left (x e^{3} - e^{3}\right )} e^{x} + \frac {5}{3} \, e^{\left (x + 3\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.04, size = 13, normalized size = 0.50 \begin {gather*} -\frac {5\,x\,\left (6\,x-{\mathrm {e}}^{x+3}\right )}{3} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.09, size = 14, normalized size = 0.54 \begin {gather*} - 10 x^{2} + \frac {5 x e^{x + 3}}{3} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________