Optimal. Leaf size=22 \[ \log \left (-2+e^2-e^x-2 x-\log (3-x)\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.27, antiderivative size = 20, normalized size of antiderivative = 0.91, number of steps used = 2, number of rules used = 2, integrand size = 51, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.039, Rules used = {6741, 6684} \begin {gather*} \log \left (2 x+e^x+\log (3-x)-e^2+2\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 6684
Rule 6741
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {5-e^x (-3+x)-2 x}{(3-x) \left (e^x+2 \left (1-\frac {e^2}{2}\right )+2 x+\log (3-x)\right )} \, dx\\ &=\log \left (2-e^2+e^x+2 x+\log (3-x)\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.58, size = 20, normalized size = 0.91 \begin {gather*} \log \left (2-e^2+e^x+2 x+\log (3-x)\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 1.02, size = 18, normalized size = 0.82 \begin {gather*} \log \left (2 \, x - e^{2} + e^{x} + \log \left (-x + 3\right ) + 2\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.19, size = 18, normalized size = 0.82 \begin {gather*} \log \left (2 \, x - e^{2} + e^{x} + \log \left (-x + 3\right ) + 2\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.13, size = 19, normalized size = 0.86
method | result | size |
risch | \(\ln \left (2 x -{\mathrm e}^{2}+{\mathrm e}^{x}+\ln \left (3-x \right )+2\right )\) | \(19\) |
norman | \(\ln \left ({\mathrm e}^{2}-2 x -\ln \left (3-x \right )-{\mathrm e}^{x}-2\right )\) | \(21\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.40, size = 18, normalized size = 0.82 \begin {gather*} \log \left (2 \, x - e^{2} + e^{x} + \log \left (-x + 3\right ) + 2\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.45, size = 18, normalized size = 0.82 \begin {gather*} \ln \left (2\,x-{\mathrm {e}}^2+\ln \left (3-x\right )+{\mathrm {e}}^x+2\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.42, size = 17, normalized size = 0.77 \begin {gather*} \log {\left (2 x + e^{x} + \log {\left (3 - x \right )} - e^{2} + 2 \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________