Optimal. Leaf size=32 \[ \left (e^{e^{-\frac {x}{10}+x^2} x}-\frac {e^x}{x}-e^x x\right )^2 \]
________________________________________________________________________________________
Rubi [F] time = 17.27, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {e^{\frac {1}{10} \left (-x+10 x^2\right )} \left (e^{2 x+\frac {1}{10} \left (x-10 x^2\right )} \left (-10+10 x+20 x^3+10 x^4+10 x^5\right )+e^{2 e^{\frac {1}{10} \left (-x+10 x^2\right )} x} \left (10 x^3-x^4+20 x^5\right )+e^{x+e^{\frac {1}{10} \left (-x+10 x^2\right )} x} \left (-10 x^2+x^3-30 x^4+x^5-20 x^6+e^{\frac {1}{10} \left (x-10 x^2\right )} \left (10 x-10 x^2-10 x^3-10 x^4\right )\right )\right )}{5 x^3} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{5} \int \frac {e^{\frac {1}{10} \left (-x+10 x^2\right )} \left (e^{2 x+\frac {1}{10} \left (x-10 x^2\right )} \left (-10+10 x+20 x^3+10 x^4+10 x^5\right )+e^{2 e^{\frac {1}{10} \left (-x+10 x^2\right )} x} \left (10 x^3-x^4+20 x^5\right )+e^{x+e^{\frac {1}{10} \left (-x+10 x^2\right )} x} \left (-10 x^2+x^3-30 x^4+x^5-20 x^6+e^{\frac {1}{10} \left (x-10 x^2\right )} \left (10 x-10 x^2-10 x^3-10 x^4\right )\right )\right )}{x^3} \, dx\\ &=\frac {1}{5} \int \frac {e^{-x^2+\frac {1}{10} x (-1+10 x)} \left (e^x-e^{e^{-\frac {x}{10}+x^2} x} x+e^x x^2\right ) \left (-10 e^{11 x/10}+10 e^{11 x/10} x+10 e^{11 x/10} x^2-10 e^{x \left (e^{-\frac {x}{10}+x^2}+x\right )} x^2+10 e^{11 x/10} x^3+e^{x \left (e^{-\frac {x}{10}+x^2}+x\right )} x^3-20 e^{x \left (e^{-\frac {x}{10}+x^2}+x\right )} x^4\right )}{x^3} \, dx\\ &=\frac {1}{5} \int \frac {e^{-x/10} \left (e^{e^{-\frac {x}{10}+x^2} x} x-e^x \left (1+x^2\right )\right ) \left (e^{x \left (e^{-\frac {x}{10}+x^2}+x\right )} x^2 \left (10-x+20 x^2\right )-10 e^{11 x/10} \left (-1+x+x^2+x^3\right )\right )}{x^3} \, dx\\ &=\frac {1}{5} \int \left (\frac {e^{-\frac {x}{10}+e^{-\frac {x}{10}+x^2} x+x^2} \left (10-x+20 x^2\right ) \left (-e^x+e^{e^{-\frac {x}{10}+x^2} x} x-e^x x^2\right )}{x}+\frac {10 e^x \left (e^x-e^{e^{-\frac {x}{10}+x^2} x} x+e^x x^2\right ) \left (-1+x+x^2+x^3\right )}{x^3}\right ) \, dx\\ &=\frac {1}{5} \int \frac {e^{-\frac {x}{10}+e^{-\frac {x}{10}+x^2} x+x^2} \left (10-x+20 x^2\right ) \left (-e^x+e^{e^{-\frac {x}{10}+x^2} x} x-e^x x^2\right )}{x} \, dx+2 \int \frac {e^x \left (e^x-e^{e^{-\frac {x}{10}+x^2} x} x+e^x x^2\right ) \left (-1+x+x^2+x^3\right )}{x^3} \, dx\\ &=\frac {1}{5} \int \left (e^{-\frac {x}{10}+2 e^{-\frac {x}{10}+x^2} x+x^2} \left (10-x+20 x^2\right )-\frac {e^{\frac {9 x}{10}+e^{-\frac {x}{10}+x^2} x+x^2} \left (10-x+30 x^2-x^3+20 x^4\right )}{x}\right ) \, dx+2 \int \left (-\frac {e^{x+e^{-\frac {x}{10}+x^2} x} \left (-1+x+x^2+x^3\right )}{x^2}+\frac {e^{2 x} \left (1+x^2\right ) \left (-1+x+x^2+x^3\right )}{x^3}\right ) \, dx\\ &=\frac {1}{5} \int e^{-\frac {x}{10}+2 e^{-\frac {x}{10}+x^2} x+x^2} \left (10-x+20 x^2\right ) \, dx-\frac {1}{5} \int \frac {e^{\frac {9 x}{10}+e^{-\frac {x}{10}+x^2} x+x^2} \left (10-x+30 x^2-x^3+20 x^4\right )}{x} \, dx-2 \int \frac {e^{x+e^{-\frac {x}{10}+x^2} x} \left (-1+x+x^2+x^3\right )}{x^2} \, dx+2 \int \frac {e^{2 x} \left (1+x^2\right ) \left (-1+x+x^2+x^3\right )}{x^3} \, dx\\ &=\frac {1}{5} \int \left (10 e^{-\frac {x}{10}+2 e^{-\frac {x}{10}+x^2} x+x^2}-e^{-\frac {x}{10}+2 e^{-\frac {x}{10}+x^2} x+x^2} x+20 e^{-\frac {x}{10}+2 e^{-\frac {x}{10}+x^2} x+x^2} x^2\right ) \, dx-\frac {1}{5} \int \left (-e^{\frac {9 x}{10}+e^{-\frac {x}{10}+x^2} x+x^2}+\frac {10 e^{\frac {9 x}{10}+e^{-\frac {x}{10}+x^2} x+x^2}}{x}+30 e^{\frac {9 x}{10}+e^{-\frac {x}{10}+x^2} x+x^2} x-e^{\frac {9 x}{10}+e^{-\frac {x}{10}+x^2} x+x^2} x^2+20 e^{\frac {9 x}{10}+e^{-\frac {x}{10}+x^2} x+x^2} x^3\right ) \, dx-2 \int \left (e^{x+e^{-\frac {x}{10}+x^2} x}-\frac {e^{x+e^{-\frac {x}{10}+x^2} x}}{x^2}+\frac {e^{x+e^{-\frac {x}{10}+x^2} x}}{x}+e^{x+e^{-\frac {x}{10}+x^2} x} x\right ) \, dx+2 \int \left (2 e^{2 x}-\frac {e^{2 x}}{x^3}+\frac {e^{2 x}}{x^2}+e^{2 x} x+e^{2 x} x^2\right ) \, dx\\ &=\frac {1}{5} \int e^{\frac {9 x}{10}+e^{-\frac {x}{10}+x^2} x+x^2} \, dx-\frac {1}{5} \int e^{-\frac {x}{10}+2 e^{-\frac {x}{10}+x^2} x+x^2} x \, dx+\frac {1}{5} \int e^{\frac {9 x}{10}+e^{-\frac {x}{10}+x^2} x+x^2} x^2 \, dx-2 \int e^{x+e^{-\frac {x}{10}+x^2} x} \, dx+2 \int e^{-\frac {x}{10}+2 e^{-\frac {x}{10}+x^2} x+x^2} \, dx-2 \int \frac {e^{2 x}}{x^3} \, dx+2 \int \frac {e^{2 x}}{x^2} \, dx+2 \int \frac {e^{x+e^{-\frac {x}{10}+x^2} x}}{x^2} \, dx-2 \int \frac {e^{x+e^{-\frac {x}{10}+x^2} x}}{x} \, dx-2 \int \frac {e^{\frac {9 x}{10}+e^{-\frac {x}{10}+x^2} x+x^2}}{x} \, dx+2 \int e^{2 x} x \, dx-2 \int e^{x+e^{-\frac {x}{10}+x^2} x} x \, dx+2 \int e^{2 x} x^2 \, dx+4 \int e^{2 x} \, dx+4 \int e^{-\frac {x}{10}+2 e^{-\frac {x}{10}+x^2} x+x^2} x^2 \, dx-4 \int e^{\frac {9 x}{10}+e^{-\frac {x}{10}+x^2} x+x^2} x^3 \, dx-6 \int e^{\frac {9 x}{10}+e^{-\frac {x}{10}+x^2} x+x^2} x \, dx\\ &=2 e^{2 x}+\frac {e^{2 x}}{x^2}-\frac {2 e^{2 x}}{x}+e^{2 x} x+e^{2 x} x^2+\frac {1}{5} \int e^{\frac {9 x}{10}+e^{-\frac {x}{10}+x^2} x+x^2} \, dx-\frac {1}{5} \int e^{-\frac {x}{10}+2 e^{-\frac {x}{10}+x^2} x+x^2} x \, dx+\frac {1}{5} \int e^{\frac {9 x}{10}+e^{-\frac {x}{10}+x^2} x+x^2} x^2 \, dx-2 \int e^{x+e^{-\frac {x}{10}+x^2} x} \, dx+2 \int e^{-\frac {x}{10}+2 e^{-\frac {x}{10}+x^2} x+x^2} \, dx-2 \int \frac {e^{2 x}}{x^2} \, dx+2 \int \frac {e^{x+e^{-\frac {x}{10}+x^2} x}}{x^2} \, dx-2 \int \frac {e^{x+e^{-\frac {x}{10}+x^2} x}}{x} \, dx-2 \int \frac {e^{\frac {9 x}{10}+e^{-\frac {x}{10}+x^2} x+x^2}}{x} \, dx-2 \int e^{2 x} x \, dx-2 \int e^{x+e^{-\frac {x}{10}+x^2} x} x \, dx+4 \int \frac {e^{2 x}}{x} \, dx+4 \int e^{-\frac {x}{10}+2 e^{-\frac {x}{10}+x^2} x+x^2} x^2 \, dx-4 \int e^{\frac {9 x}{10}+e^{-\frac {x}{10}+x^2} x+x^2} x^3 \, dx-6 \int e^{\frac {9 x}{10}+e^{-\frac {x}{10}+x^2} x+x^2} x \, dx-\int e^{2 x} \, dx\\ &=\frac {3 e^{2 x}}{2}+\frac {e^{2 x}}{x^2}+e^{2 x} x^2+4 \text {Ei}(2 x)+\frac {1}{5} \int e^{\frac {9 x}{10}+e^{-\frac {x}{10}+x^2} x+x^2} \, dx-\frac {1}{5} \int e^{-\frac {x}{10}+2 e^{-\frac {x}{10}+x^2} x+x^2} x \, dx+\frac {1}{5} \int e^{\frac {9 x}{10}+e^{-\frac {x}{10}+x^2} x+x^2} x^2 \, dx-2 \int e^{x+e^{-\frac {x}{10}+x^2} x} \, dx+2 \int e^{-\frac {x}{10}+2 e^{-\frac {x}{10}+x^2} x+x^2} \, dx+2 \int \frac {e^{x+e^{-\frac {x}{10}+x^2} x}}{x^2} \, dx-2 \int \frac {e^{x+e^{-\frac {x}{10}+x^2} x}}{x} \, dx-2 \int \frac {e^{\frac {9 x}{10}+e^{-\frac {x}{10}+x^2} x+x^2}}{x} \, dx-2 \int e^{x+e^{-\frac {x}{10}+x^2} x} x \, dx-4 \int \frac {e^{2 x}}{x} \, dx+4 \int e^{-\frac {x}{10}+2 e^{-\frac {x}{10}+x^2} x+x^2} x^2 \, dx-4 \int e^{\frac {9 x}{10}+e^{-\frac {x}{10}+x^2} x+x^2} x^3 \, dx-6 \int e^{\frac {9 x}{10}+e^{-\frac {x}{10}+x^2} x+x^2} x \, dx+\int e^{2 x} \, dx\\ &=2 e^{2 x}+\frac {e^{2 x}}{x^2}+e^{2 x} x^2+\frac {1}{5} \int e^{\frac {9 x}{10}+e^{-\frac {x}{10}+x^2} x+x^2} \, dx-\frac {1}{5} \int e^{-\frac {x}{10}+2 e^{-\frac {x}{10}+x^2} x+x^2} x \, dx+\frac {1}{5} \int e^{\frac {9 x}{10}+e^{-\frac {x}{10}+x^2} x+x^2} x^2 \, dx-2 \int e^{x+e^{-\frac {x}{10}+x^2} x} \, dx+2 \int e^{-\frac {x}{10}+2 e^{-\frac {x}{10}+x^2} x+x^2} \, dx+2 \int \frac {e^{x+e^{-\frac {x}{10}+x^2} x}}{x^2} \, dx-2 \int \frac {e^{x+e^{-\frac {x}{10}+x^2} x}}{x} \, dx-2 \int \frac {e^{\frac {9 x}{10}+e^{-\frac {x}{10}+x^2} x+x^2}}{x} \, dx-2 \int e^{x+e^{-\frac {x}{10}+x^2} x} x \, dx+4 \int e^{-\frac {x}{10}+2 e^{-\frac {x}{10}+x^2} x+x^2} x^2 \, dx-4 \int e^{\frac {9 x}{10}+e^{-\frac {x}{10}+x^2} x+x^2} x^3 \, dx-6 \int e^{\frac {9 x}{10}+e^{-\frac {x}{10}+x^2} x+x^2} x \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 1.80, size = 34, normalized size = 1.06 \begin {gather*} \frac {\left (e^{e^{-\frac {x}{10}+x^2} x} x-e^x \left (1+x^2\right )\right )^2}{x^2} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.54, size = 66, normalized size = 2.06 \begin {gather*} \frac {{\left (x^{2} e^{\left (2 \, x e^{\left (x^{2} - \frac {1}{10} \, x\right )} + 2 \, x\right )} - 2 \, {\left (x^{3} + x\right )} e^{\left (x e^{\left (x^{2} - \frac {1}{10} \, x\right )} + 3 \, x\right )} + {\left (x^{4} + 2 \, x^{2} + 1\right )} e^{\left (4 \, x\right )}\right )} e^{\left (-2 \, x\right )}}{x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {{\left (10 \, {\left (x^{5} + x^{4} + 2 \, x^{3} + x - 1\right )} e^{\left (-x^{2} + \frac {21}{10} \, x\right )} + {\left (20 \, x^{5} - x^{4} + 10 \, x^{3}\right )} e^{\left (2 \, x e^{\left (x^{2} - \frac {1}{10} \, x\right )}\right )} - {\left (20 \, x^{6} - x^{5} + 30 \, x^{4} - x^{3} + 10 \, x^{2} + 10 \, {\left (x^{4} + x^{3} + x^{2} - x\right )} e^{\left (-x^{2} + \frac {1}{10} \, x\right )}\right )} e^{\left (x e^{\left (x^{2} - \frac {1}{10} \, x\right )} + x\right )}\right )} e^{\left (x^{2} - \frac {1}{10} \, x\right )}}{5 \, x^{3}}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.07, size = 57, normalized size = 1.78
method | result | size |
risch | \(\frac {\left (x^{4}+2 x^{2}+1\right ) {\mathrm e}^{2 x}}{x^{2}}+{\mathrm e}^{2 x \,{\mathrm e}^{\frac {x \left (10 x -1\right )}{10}}}-\frac {2 \left (x^{2}+1\right ) {\mathrm e}^{x \left ({\mathrm e}^{\frac {x \left (10 x -1\right )}{10}}+1\right )}}{x}\) | \(57\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \frac {1}{2} \, {\left (2 \, x^{2} - 2 \, x + 1\right )} e^{\left (2 \, x\right )} + \frac {1}{2} \, {\left (2 \, x - 1\right )} e^{\left (2 \, x\right )} + e^{\left (2 \, x e^{\left (x^{2} - \frac {1}{10} \, x\right )}\right )} + 2 \, e^{\left (2 \, x\right )} + 4 \, \Gamma \left (-1, -2 \, x\right ) + 8 \, \Gamma \left (-2, -2 \, x\right ) - \frac {1}{5} \, \int \frac {{\left ({\left (20 \, x^{5} - x^{4} + 30 \, x^{3} - x^{2} + 10 \, x\right )} e^{\left (x^{2} + \frac {9}{10} \, x\right )} + 10 \, {\left (x^{3} + x^{2} + x - 1\right )} e^{x}\right )} e^{\left (x e^{\left (x^{2} - \frac {1}{10} \, x\right )}\right )}}{x^{2}}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.48, size = 29, normalized size = 0.91 \begin {gather*} \frac {{\left ({\mathrm {e}}^x+x^2\,{\mathrm {e}}^x-x\,{\mathrm {e}}^{x\,{\mathrm {e}}^{-\frac {x}{10}}\,{\mathrm {e}}^{x^2}}\right )}^2}{x^2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.41, size = 61, normalized size = 1.91 \begin {gather*} \frac {x e^{2 x e^{x^{2} - \frac {x}{10}}} + \left (- 2 x^{2} e^{x} - 2 e^{x}\right ) e^{x e^{x^{2} - \frac {x}{10}}}}{x} + \frac {\left (x^{4} + 2 x^{2} + 1\right ) e^{2 x}}{x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________