Optimal. Leaf size=28 \[ 5+x \left (\frac {4}{x-\left (4+e^x-x\right ) x}+\log \left (-2+x^2\right )\right ) \]
________________________________________________________________________________________
Rubi [F] time = 0.72, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {8+14 x^2+2 e^{2 x} x^2-12 x^3+2 x^4+e^x \left (-8+16 x^2-4 x^3\right )+\left (-18+12 x+7 x^2-6 x^3+x^4+e^{2 x} \left (-2+x^2\right )+e^x \left (-12+4 x+6 x^2-2 x^3\right )\right ) \log \left (-2+x^2\right )}{-18+12 x+7 x^2-6 x^3+x^4+e^{2 x} \left (-2+x^2\right )+e^x \left (-12+4 x+6 x^2-2 x^3\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (\frac {2 \left (4+7 x^2+e^{2 x} x^2-6 x^3+x^4-2 e^x \left (2-4 x^2+x^3\right )\right )}{\left (3+e^x-x\right )^2 \left (-2+x^2\right )}+\log \left (-2+x^2\right )\right ) \, dx\\ &=2 \int \frac {4+7 x^2+e^{2 x} x^2-6 x^3+x^4-2 e^x \left (2-4 x^2+x^3\right )}{\left (3+e^x-x\right )^2 \left (-2+x^2\right )} \, dx+\int \log \left (-2+x^2\right ) \, dx\\ &=x \log \left (-2+x^2\right )-2 \int \frac {x^2}{-2+x^2} \, dx+2 \int \left (\frac {2}{3+e^x-x}+\frac {2 (-4+x)}{\left (3+e^x-x\right )^2}+\frac {x^2}{-2+x^2}\right ) \, dx\\ &=-2 x+x \log \left (-2+x^2\right )+2 \int \frac {x^2}{-2+x^2} \, dx+4 \int \frac {1}{3+e^x-x} \, dx+4 \int \frac {-4+x}{\left (3+e^x-x\right )^2} \, dx-4 \int \frac {1}{-2+x^2} \, dx\\ &=2 \sqrt {2} \tanh ^{-1}\left (\frac {x}{\sqrt {2}}\right )+x \log \left (-2+x^2\right )+4 \int \frac {1}{3+e^x-x} \, dx+4 \int \left (-\frac {4}{\left (3+e^x-x\right )^2}+\frac {x}{\left (3+e^x-x\right )^2}\right ) \, dx+4 \int \frac {1}{-2+x^2} \, dx\\ &=x \log \left (-2+x^2\right )+4 \int \frac {1}{3+e^x-x} \, dx+4 \int \frac {x}{\left (3+e^x-x\right )^2} \, dx-16 \int \frac {1}{\left (3+e^x-x\right )^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [B] time = 0.20, size = 67, normalized size = 2.39 \begin {gather*} -\frac {4}{3+e^x-x}+2 \sqrt {2} \tanh ^{-1}\left (\frac {x}{\sqrt {2}}\right )+\sqrt {2} \log \left (\sqrt {2}-x\right )-\sqrt {2} \log \left (\sqrt {2}+x\right )+x \log \left (-2+x^2\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.59, size = 31, normalized size = 1.11 \begin {gather*} \frac {{\left (x^{2} - x e^{x} - 3 \, x\right )} \log \left (x^{2} - 2\right ) + 4}{x - e^{x} - 3} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.20, size = 42, normalized size = 1.50 \begin {gather*} \frac {x^{2} \log \left (x^{2} - 2\right ) - x e^{x} \log \left (x^{2} - 2\right ) - 3 \, x \log \left (x^{2} - 2\right ) + 4}{x - e^{x} - 3} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.03, size = 21, normalized size = 0.75
method | result | size |
risch | \(\ln \left (x^{2}-2\right ) x +\frac {4}{-{\mathrm e}^{x}+x -3}\) | \(21\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.83, size = 31, normalized size = 1.11 \begin {gather*} \frac {{\left (x^{2} - x e^{x} - 3 \, x\right )} \log \left (x^{2} - 2\right ) + 4}{x - e^{x} - 3} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.06, size = 20, normalized size = 0.71 \begin {gather*} x\,\ln \left (x^2-2\right )-\frac {4}{{\mathrm {e}}^x-x+3} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.36, size = 15, normalized size = 0.54 \begin {gather*} x \log {\left (x^{2} - 2 \right )} - \frac {4}{- x + e^{x} + 3} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________