Optimal. Leaf size=24 \[ 1-e^{-x+\frac {2 x}{5+x}-\frac {2}{\log (5)}} \]
________________________________________________________________________________________
Rubi [F] time = 1.24, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {\exp \left (\frac {-10-2 x+\left (-3 x-x^2\right ) \log (5)}{(5+x) \log (5)}\right ) \left (15+10 x+x^2\right )}{25+10 x+x^2} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {\exp \left (\frac {-10-2 x+\left (-3 x-x^2\right ) \log (5)}{(5+x) \log (5)}\right ) \left (15+10 x+x^2\right )}{(5+x)^2} \, dx\\ &=\int \frac {\exp \left (\frac {-10-x^2 \log (5)-x (2+\log (125))}{(5+x) \log (5)}\right ) \left (15+10 x+x^2\right )}{(5+x)^2} \, dx\\ &=\int \left (\exp \left (\frac {-10-x^2 \log (5)-x (2+\log (125))}{(5+x) \log (5)}\right )-\frac {10 \exp \left (\frac {-10-x^2 \log (5)-x (2+\log (125))}{(5+x) \log (5)}\right )}{(5+x)^2}\right ) \, dx\\ &=-\left (10 \int \frac {\exp \left (\frac {-10-x^2 \log (5)-x (2+\log (125))}{(5+x) \log (5)}\right )}{(5+x)^2} \, dx\right )+\int \exp \left (\frac {-10-x^2 \log (5)-x (2+\log (125))}{(5+x) \log (5)}\right ) \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [F] time = 0.91, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {e^{\frac {-10-2 x+\left (-3 x-x^2\right ) \log (5)}{(5+x) \log (5)}} \left (15+10 x+x^2\right )}{25+10 x+x^2} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.55, size = 29, normalized size = 1.21 \begin {gather*} -e^{\left (-\frac {{\left (x^{2} + 3 \, x\right )} \log \relax (5) + 2 \, x + 10}{{\left (x + 5\right )} \log \relax (5)}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.15, size = 65, normalized size = 2.71 \begin {gather*} -e^{\left (-\frac {x^{2} \log \relax (5)}{x \log \relax (5) + 5 \, \log \relax (5)} - \frac {3 \, x \log \relax (5)}{x \log \relax (5) + 5 \, \log \relax (5)} - \frac {2 \, x}{x \log \relax (5) + 5 \, \log \relax (5)} - \frac {10}{x \log \relax (5) + 5 \, \log \relax (5)}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.20, size = 31, normalized size = 1.29
method | result | size |
gosper | \(-{\mathrm e}^{-\frac {x^{2} \ln \relax (5)+3 x \ln \relax (5)+2 x +10}{\left (5+x \right ) \ln \relax (5)}}\) | \(31\) |
risch | \(-{\mathrm e}^{-\frac {x^{2} \ln \relax (5)+3 x \ln \relax (5)+2 x +10}{\left (5+x \right ) \ln \relax (5)}}\) | \(31\) |
norman | \(\frac {-x \,{\mathrm e}^{\frac {\left (-x^{2}-3 x \right ) \ln \relax (5)-2 x -10}{\left (5+x \right ) \ln \relax (5)}}-5 \,{\mathrm e}^{\frac {\left (-x^{2}-3 x \right ) \ln \relax (5)-2 x -10}{\left (5+x \right ) \ln \relax (5)}}}{5+x}\) | \(69\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.83, size = 21, normalized size = 0.88 \begin {gather*} -e^{\left (-x - \frac {10}{x + 5} - \frac {2}{\log \relax (5)} + 2\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 2.97, size = 52, normalized size = 2.17 \begin {gather*} -{\left (\frac {1}{5}\right )}^{\frac {x^2+3\,x}{5\,\ln \relax (5)+x\,\ln \relax (5)}}\,{\mathrm {e}}^{-\frac {2\,x}{5\,\ln \relax (5)+x\,\ln \relax (5)}}\,{\mathrm {e}}^{-\frac {10}{5\,\ln \relax (5)+x\,\ln \relax (5)}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.18, size = 26, normalized size = 1.08 \begin {gather*} - e^{\frac {- 2 x + \left (- x^{2} - 3 x\right ) \log {\relax (5 )} - 10}{\left (x + 5\right ) \log {\relax (5 )}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________