Optimal. Leaf size=25 \[ x+5 x \left (-x+e^{\frac {e^2}{x^4}} x-x^2\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.06, antiderivative size = 26, normalized size of antiderivative = 1.04, number of steps used = 3, number of rules used = 2, integrand size = 39, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.051, Rules used = {14, 2288} \begin {gather*} -5 x^3-5 x^2+5 e^{\frac {e^2}{x^4}} x^2+x \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 14
Rule 2288
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (1-10 x-15 x^2+\frac {10 e^{\frac {e^2}{x^4}} \left (-2 e^2+x^4\right )}{x^3}\right ) \, dx\\ &=x-5 x^2-5 x^3+10 \int \frac {e^{\frac {e^2}{x^4}} \left (-2 e^2+x^4\right )}{x^3} \, dx\\ &=x-5 x^2+5 e^{\frac {e^2}{x^4}} x^2-5 x^3\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.02, size = 26, normalized size = 1.04 \begin {gather*} x-5 x^2+5 e^{\frac {e^2}{x^4}} x^2-5 x^3 \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.57, size = 24, normalized size = 0.96 \begin {gather*} -5 \, x^{3} + 5 \, x^{2} e^{\left (\frac {e^{2}}{x^{4}}\right )} - 5 \, x^{2} + x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.22, size = 42, normalized size = 1.68 \begin {gather*} -{\left (5 \, x^{3} e^{2} + 5 \, x^{2} e^{2} - 5 \, x^{2} e^{\left (\frac {2 \, x^{4} + e^{2}}{x^{4}}\right )} - x e^{2}\right )} e^{\left (-2\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.16, size = 25, normalized size = 1.00
method | result | size |
risch | \(-5 x^{3}+5 x^{2} {\mathrm e}^{\frac {{\mathrm e}^{2}}{x^{4}}}-5 x^{2}+x\) | \(25\) |
norman | \(\frac {x^{3}-5 x^{4}-5 x^{5}+5 \,{\mathrm e}^{\frac {{\mathrm e}^{2}}{x^{4}}} x^{4}}{x^{2}}\) | \(33\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [C] time = 0.54, size = 66, normalized size = 2.64 \begin {gather*} \frac {5}{2} \, x^{2} \sqrt {-\frac {e^{2}}{x^{4}}} \Gamma \left (-\frac {1}{2}, -\frac {e^{2}}{x^{4}}\right ) - 5 \, x^{3} - 5 \, x^{2} + x + \frac {5 \, \sqrt {\pi } {\left (\operatorname {erf}\left (\sqrt {-\frac {e^{2}}{x^{4}}}\right ) - 1\right )} e^{2}}{x^{2} \sqrt {-\frac {e^{2}}{x^{4}}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 2.93, size = 24, normalized size = 0.96 \begin {gather*} x+5\,x^2\,{\mathrm {e}}^{\frac {{\mathrm {e}}^2}{x^4}}-5\,x^2-5\,x^3 \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.16, size = 24, normalized size = 0.96 \begin {gather*} - 5 x^{3} + 5 x^{2} e^{\frac {e^{2}}{x^{4}}} - 5 x^{2} + x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________