Optimal. Leaf size=19 \[ \frac {5}{x}-8 \log ^4\left (\frac {16}{e x^3}\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.03, antiderivative size = 22, normalized size of antiderivative = 1.16, number of steps used = 4, number of rules used = 3, integrand size = 20, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.150, Rules used = {14, 2302, 30} \begin {gather*} \frac {5}{x}-8 \left (-\log \left (\frac {1}{x^3}\right )+1-\log (16)\right )^4 \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 14
Rule 30
Rule 2302
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (-\frac {5}{x^2}+\frac {96 \left (-1+\log (16)+\log \left (\frac {1}{x^3}\right )\right )^3}{x}\right ) \, dx\\ &=\frac {5}{x}+96 \int \frac {\left (-1+\log (16)+\log \left (\frac {1}{x^3}\right )\right )^3}{x} \, dx\\ &=\frac {5}{x}-32 \operatorname {Subst}\left (\int x^3 \, dx,x,-1+\log (16)+\log \left (\frac {1}{x^3}\right )\right )\\ &=\frac {5}{x}-8 \left (1-\log (16)-\log \left (\frac {1}{x^3}\right )\right )^4\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.02, size = 18, normalized size = 0.95 \begin {gather*} \frac {5}{x}-8 \left (-1+\log (16)+\log \left (\frac {1}{x^3}\right )\right )^4 \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 1.78, size = 20, normalized size = 1.05 \begin {gather*} -\frac {8 \, x \log \left (\frac {16 \, e^{\left (-1\right )}}{x^{3}}\right )^{4} - 5}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.25, size = 40, normalized size = 2.11 \begin {gather*} -8 \, \log \left (\frac {16}{x^{3}}\right )^{4} + 32 \, \log \left (\frac {16}{x^{3}}\right )^{3} - 48 \, \log \left (\frac {16}{x^{3}}\right )^{2} + \frac {5}{x} - 96 \, \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.03, size = 19, normalized size = 1.00
method | result | size |
risch | \(\frac {5}{x}-8 \ln \left (\frac {16 \,{\mathrm e}^{-1}}{x^{3}}\right )^{4}\) | \(19\) |
derivativedivides | \(\frac {5}{x}-8 \ln \left (\frac {16 \,{\mathrm e}^{-1}}{x^{3}}\right )^{4}\) | \(21\) |
default | \(\frac {5}{x}-8 \ln \left (\frac {16 \,{\mathrm e}^{-1}}{x^{3}}\right )^{4}\) | \(21\) |
norman | \(\frac {5-8 x \ln \left (\frac {16 \,{\mathrm e}^{-1}}{x^{3}}\right )^{4}}{x}\) | \(22\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.43, size = 18, normalized size = 0.95 \begin {gather*} -8 \, \log \left (\frac {16 \, e^{\left (-1\right )}}{x^{3}}\right )^{4} + \frac {5}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 2.90, size = 18, normalized size = 0.95 \begin {gather*} \frac {5}{x}-8\,{\ln \left (\frac {16\,{\mathrm {e}}^{-1}}{x^3}\right )}^4 \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.11, size = 15, normalized size = 0.79 \begin {gather*} - 8 \log {\left (\frac {16}{e x^{3}} \right )}^{4} + \frac {5}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________