Optimal. Leaf size=27 \[ e^{\frac {x}{1+x-e^x x+\frac {-7+x}{2 (25+x)}}} \]
________________________________________________________________________________________
Rubi [F] time = 9.06, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {\exp \left (\frac {-50 x-2 x^2}{-43-53 x-2 x^2+e^x \left (50 x+2 x^2\right )}\right ) \left (2150+172 x+6 x^2+e^x \left (2500 x^2+200 x^3+4 x^4\right )\right )}{1849+4558 x+2981 x^2+212 x^3+4 x^4+e^x \left (-4300 x-5472 x^2-412 x^3-8 x^4\right )+e^{2 x} \left (2500 x^2+200 x^3+4 x^4\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {\exp \left (-\frac {2 x (25+x)}{-43+\left (-53+50 e^x\right ) x+2 \left (-1+e^x\right ) x^2}\right ) \left (2150+172 x+\left (6+2500 e^x\right ) x^2+200 e^x x^3+4 e^x x^4\right )}{\left (43-\left (-53+50 e^x\right ) x-2 \left (-1+e^x\right ) x^2\right )^2} \, dx\\ &=\int \left (\frac {2 \exp \left (-\frac {2 x (25+x)}{-43+\left (-53+50 e^x\right ) x+2 \left (-1+e^x\right ) x^2}\right ) x (25+x)}{-43-53 x+50 e^x x-2 x^2+2 e^x x^2}+\frac {2 \exp \left (-\frac {2 x (25+x)}{-43+\left (-53+50 e^x\right ) x+2 \left (-1+e^x\right ) x^2}\right ) \left (1075+1161 x+1371 x^2+103 x^3+2 x^4\right )}{\left (-43-53 x+50 e^x x-2 x^2+2 e^x x^2\right )^2}\right ) \, dx\\ &=2 \int \frac {\exp \left (-\frac {2 x (25+x)}{-43+\left (-53+50 e^x\right ) x+2 \left (-1+e^x\right ) x^2}\right ) x (25+x)}{-43-53 x+50 e^x x-2 x^2+2 e^x x^2} \, dx+2 \int \frac {\exp \left (-\frac {2 x (25+x)}{-43+\left (-53+50 e^x\right ) x+2 \left (-1+e^x\right ) x^2}\right ) \left (1075+1161 x+1371 x^2+103 x^3+2 x^4\right )}{\left (-43-53 x+50 e^x x-2 x^2+2 e^x x^2\right )^2} \, dx\\ &=2 \int \left (\frac {1075 \exp \left (-\frac {2 x (25+x)}{-43+\left (-53+50 e^x\right ) x+2 \left (-1+e^x\right ) x^2}\right )}{\left (-43-53 x+50 e^x x-2 x^2+2 e^x x^2\right )^2}+\frac {1161 \exp \left (-\frac {2 x (25+x)}{-43+\left (-53+50 e^x\right ) x+2 \left (-1+e^x\right ) x^2}\right ) x}{\left (-43-53 x+50 e^x x-2 x^2+2 e^x x^2\right )^2}+\frac {1371 \exp \left (-\frac {2 x (25+x)}{-43+\left (-53+50 e^x\right ) x+2 \left (-1+e^x\right ) x^2}\right ) x^2}{\left (-43-53 x+50 e^x x-2 x^2+2 e^x x^2\right )^2}+\frac {103 \exp \left (-\frac {2 x (25+x)}{-43+\left (-53+50 e^x\right ) x+2 \left (-1+e^x\right ) x^2}\right ) x^3}{\left (-43-53 x+50 e^x x-2 x^2+2 e^x x^2\right )^2}+\frac {2 \exp \left (-\frac {2 x (25+x)}{-43+\left (-53+50 e^x\right ) x+2 \left (-1+e^x\right ) x^2}\right ) x^4}{\left (-43-53 x+50 e^x x-2 x^2+2 e^x x^2\right )^2}\right ) \, dx+2 \int \left (\frac {25 \exp \left (-\frac {2 x (25+x)}{-43+\left (-53+50 e^x\right ) x+2 \left (-1+e^x\right ) x^2}\right ) x}{-43-53 x+50 e^x x-2 x^2+2 e^x x^2}+\frac {\exp \left (-\frac {2 x (25+x)}{-43+\left (-53+50 e^x\right ) x+2 \left (-1+e^x\right ) x^2}\right ) x^2}{-43-53 x+50 e^x x-2 x^2+2 e^x x^2}\right ) \, dx\\ &=2 \int \frac {\exp \left (-\frac {2 x (25+x)}{-43+\left (-53+50 e^x\right ) x+2 \left (-1+e^x\right ) x^2}\right ) x^2}{-43-53 x+50 e^x x-2 x^2+2 e^x x^2} \, dx+4 \int \frac {\exp \left (-\frac {2 x (25+x)}{-43+\left (-53+50 e^x\right ) x+2 \left (-1+e^x\right ) x^2}\right ) x^4}{\left (-43-53 x+50 e^x x-2 x^2+2 e^x x^2\right )^2} \, dx+50 \int \frac {\exp \left (-\frac {2 x (25+x)}{-43+\left (-53+50 e^x\right ) x+2 \left (-1+e^x\right ) x^2}\right ) x}{-43-53 x+50 e^x x-2 x^2+2 e^x x^2} \, dx+206 \int \frac {\exp \left (-\frac {2 x (25+x)}{-43+\left (-53+50 e^x\right ) x+2 \left (-1+e^x\right ) x^2}\right ) x^3}{\left (-43-53 x+50 e^x x-2 x^2+2 e^x x^2\right )^2} \, dx+2150 \int \frac {\exp \left (-\frac {2 x (25+x)}{-43+\left (-53+50 e^x\right ) x+2 \left (-1+e^x\right ) x^2}\right )}{\left (-43-53 x+50 e^x x-2 x^2+2 e^x x^2\right )^2} \, dx+2322 \int \frac {\exp \left (-\frac {2 x (25+x)}{-43+\left (-53+50 e^x\right ) x+2 \left (-1+e^x\right ) x^2}\right ) x}{\left (-43-53 x+50 e^x x-2 x^2+2 e^x x^2\right )^2} \, dx+2742 \int \frac {\exp \left (-\frac {2 x (25+x)}{-43+\left (-53+50 e^x\right ) x+2 \left (-1+e^x\right ) x^2}\right ) x^2}{\left (-43-53 x+50 e^x x-2 x^2+2 e^x x^2\right )^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.09, size = 31, normalized size = 1.15 \begin {gather*} e^{-\frac {2 x (25+x)}{-43+\left (-53+50 e^x\right ) x+2 \left (-1+e^x\right ) x^2}} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 2.09, size = 33, normalized size = 1.22 \begin {gather*} e^{\left (\frac {2 \, {\left (x^{2} + 25 \, x\right )}}{2 \, x^{2} - 2 \, {\left (x^{2} + 25 \, x\right )} e^{x} + 53 \, x + 43}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {2 \, {\left (3 \, x^{2} + 2 \, {\left (x^{4} + 50 \, x^{3} + 625 \, x^{2}\right )} e^{x} + 86 \, x + 1075\right )} e^{\left (\frac {2 \, {\left (x^{2} + 25 \, x\right )}}{2 \, x^{2} - 2 \, {\left (x^{2} + 25 \, x\right )} e^{x} + 53 \, x + 43}\right )}}{4 \, x^{4} + 212 \, x^{3} + 2981 \, x^{2} + 4 \, {\left (x^{4} + 50 \, x^{3} + 625 \, x^{2}\right )} e^{\left (2 \, x\right )} - 4 \, {\left (2 \, x^{4} + 103 \, x^{3} + 1368 \, x^{2} + 1075 \, x\right )} e^{x} + 4558 \, x + 1849}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.19, size = 32, normalized size = 1.19
method | result | size |
risch | \({\mathrm e}^{-\frac {2 x \left (x +25\right )}{2 \,{\mathrm e}^{x} x^{2}+50 \,{\mathrm e}^{x} x -2 x^{2}-53 x -43}}\) | \(32\) |
norman | \(\frac {-53 x \,{\mathrm e}^{\frac {-2 x^{2}-50 x}{\left (2 x^{2}+50 x \right ) {\mathrm e}^{x}-2 x^{2}-53 x -43}}-2 x^{2} {\mathrm e}^{\frac {-2 x^{2}-50 x}{\left (2 x^{2}+50 x \right ) {\mathrm e}^{x}-2 x^{2}-53 x -43}}+50 \,{\mathrm e}^{x} x \,{\mathrm e}^{\frac {-2 x^{2}-50 x}{\left (2 x^{2}+50 x \right ) {\mathrm e}^{x}-2 x^{2}-53 x -43}}+2 \,{\mathrm e}^{x} x^{2} {\mathrm e}^{\frac {-2 x^{2}-50 x}{\left (2 x^{2}+50 x \right ) {\mathrm e}^{x}-2 x^{2}-53 x -43}}-43 \,{\mathrm e}^{\frac {-2 x^{2}-50 x}{\left (2 x^{2}+50 x \right ) {\mathrm e}^{x}-2 x^{2}-53 x -43}}}{2 \,{\mathrm e}^{x} x^{2}+50 \,{\mathrm e}^{x} x -2 x^{2}-53 x -43}\) | \(224\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.71, size = 163, normalized size = 6.04 \begin {gather*} e^{\left (\frac {50 \, x e^{x}}{2 \, x^{2} + 2 \, {\left (x^{2} + 25 \, x\right )} e^{\left (2 \, x\right )} - {\left (4 \, x^{2} + 103 \, x + 43\right )} e^{x} + 53 \, x + 43} - \frac {53 \, x}{2 \, x^{2} + 2 \, {\left (x^{2} + 25 \, x\right )} e^{\left (2 \, x\right )} - {\left (4 \, x^{2} + 103 \, x + 43\right )} e^{x} + 53 \, x + 43} + \frac {50 \, x}{2 \, x^{2} - 2 \, {\left (x^{2} + 25 \, x\right )} e^{x} + 53 \, x + 43} - \frac {43}{2 \, x^{2} + 2 \, {\left (x^{2} + 25 \, x\right )} e^{\left (2 \, x\right )} - {\left (4 \, x^{2} + 103 \, x + 43\right )} e^{x} + 53 \, x + 43} - \frac {1}{e^{x} - 1}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.25, size = 35, normalized size = 1.30 \begin {gather*} {\mathrm {e}}^{\frac {2\,x^2+50\,x}{53\,x-2\,x^2\,{\mathrm {e}}^x-50\,x\,{\mathrm {e}}^x+2\,x^2+43}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.77, size = 32, normalized size = 1.19 \begin {gather*} e^{\frac {- 2 x^{2} - 50 x}{- 2 x^{2} - 53 x + \left (2 x^{2} + 50 x\right ) e^{x} - 43}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________