Optimal. Leaf size=24 \[ \frac {e^{8+x^2} \left (e^4+x+\frac {x}{\log (4)}\right )^4}{x^2} \]
________________________________________________________________________________________
Rubi [A] time = 0.99, antiderivative size = 48, normalized size of antiderivative = 2.00, number of steps used = 4, number of rules used = 3, integrand size = 232, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.013, Rules used = {12, 6688, 2288} \begin {gather*} \frac {e^{x^2+8} \left (x (1+\log (4))+e^4 \log (4)\right )^3 \left (x^3 (1+\log (4))+e^4 x^2 \log (4)\right )}{x^4 \log ^4(4)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 2288
Rule 6688
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {\int \frac {e^{x^2} \left (e^8 \left (2 x^4+2 x^6\right )+\left (e^{12} \left (4 x^3+8 x^5\right )+e^8 \left (8 x^4+8 x^6\right )\right ) \log (4)+\left (12 e^{16} x^4+e^{12} \left (12 x^3+24 x^5\right )+e^8 \left (12 x^4+12 x^6\right )\right ) \log ^2(4)+\left (24 e^{16} x^4+e^{20} \left (-4 x+8 x^3\right )+e^{12} \left (12 x^3+24 x^5\right )+e^8 \left (8 x^4+8 x^6\right )\right ) \log ^3(4)+\left (12 e^{16} x^4+e^{24} \left (-2+2 x^2\right )+e^{20} \left (-4 x+8 x^3\right )+e^{12} \left (4 x^3+8 x^5\right )+e^8 \left (2 x^4+2 x^6\right )\right ) \log ^4(4)\right )}{x^3} \, dx}{\log ^4(4)}\\ &=\frac {\int \frac {2 e^{8+x^2} \left (e^4 \log (4)+x (1+\log (4))\right )^3 \left (-e^4 \log (4)+e^4 x^2 \log (4)+x (1+\log (4))+x^3 (1+\log (4))\right )}{x^3} \, dx}{\log ^4(4)}\\ &=\frac {2 \int \frac {e^{8+x^2} \left (e^4 \log (4)+x (1+\log (4))\right )^3 \left (-e^4 \log (4)+e^4 x^2 \log (4)+x (1+\log (4))+x^3 (1+\log (4))\right )}{x^3} \, dx}{\log ^4(4)}\\ &=\frac {e^{8+x^2} \left (e^4 \log (4)+x (1+\log (4))\right )^3 \left (e^4 x^2 \log (4)+x^3 (1+\log (4))\right )}{x^4 \log ^4(4)}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.14, size = 29, normalized size = 1.21 \begin {gather*} \frac {e^{8+x^2} \left (x+e^4 \log (4)+x \log (4)\right )^4}{x^2 \log ^4(4)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 1.48, size = 128, normalized size = 5.33 \begin {gather*} \frac {{\left (x^{4} e^{8} + 16 \, {\left (x^{4} e^{8} + 4 \, x^{3} e^{12} + 6 \, x^{2} e^{16} + 4 \, x e^{20} + e^{24}\right )} \log \relax (2)^{4} + 32 \, {\left (x^{4} e^{8} + 3 \, x^{3} e^{12} + 3 \, x^{2} e^{16} + x e^{20}\right )} \log \relax (2)^{3} + 24 \, {\left (x^{4} e^{8} + 2 \, x^{3} e^{12} + x^{2} e^{16}\right )} \log \relax (2)^{2} + 8 \, {\left (x^{4} e^{8} + x^{3} e^{12}\right )} \log \relax (2)\right )} e^{\left (x^{2}\right )}}{16 \, x^{2} \log \relax (2)^{4}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.32, size = 219, normalized size = 9.12 \begin {gather*} \frac {16 \, x^{4} e^{\left (x^{2} + 8\right )} \log \relax (2)^{4} + 32 \, x^{4} e^{\left (x^{2} + 8\right )} \log \relax (2)^{3} + 64 \, x^{3} e^{\left (x^{2} + 12\right )} \log \relax (2)^{4} + 24 \, x^{4} e^{\left (x^{2} + 8\right )} \log \relax (2)^{2} + 96 \, x^{3} e^{\left (x^{2} + 12\right )} \log \relax (2)^{3} + 96 \, x^{2} e^{\left (x^{2} + 16\right )} \log \relax (2)^{4} + 8 \, x^{4} e^{\left (x^{2} + 8\right )} \log \relax (2) + 48 \, x^{3} e^{\left (x^{2} + 12\right )} \log \relax (2)^{2} + 96 \, x^{2} e^{\left (x^{2} + 16\right )} \log \relax (2)^{3} + 64 \, x e^{\left (x^{2} + 20\right )} \log \relax (2)^{4} + x^{4} e^{\left (x^{2} + 8\right )} + 8 \, x^{3} e^{\left (x^{2} + 12\right )} \log \relax (2) + 24 \, x^{2} e^{\left (x^{2} + 16\right )} \log \relax (2)^{2} + 32 \, x e^{\left (x^{2} + 20\right )} \log \relax (2)^{3} + 16 \, e^{\left (x^{2} + 24\right )} \log \relax (2)^{4}}{16 \, x^{2} \log \relax (2)^{4}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [B] time = 0.12, size = 155, normalized size = 6.46
method | result | size |
risch | \(\frac {\left (16 \ln \relax (2)^{4} {\mathrm e}^{16}+64 \,{\mathrm e}^{12} \ln \relax (2)^{4} x +32 \,{\mathrm e}^{12} \ln \relax (2)^{3} x +96 \,{\mathrm e}^{8} \ln \relax (2)^{4} x^{2}+96 \,{\mathrm e}^{8} \ln \relax (2)^{3} x^{2}+64 \,{\mathrm e}^{4} \ln \relax (2)^{4} x^{3}+24 \,{\mathrm e}^{8} \ln \relax (2)^{2} x^{2}+96 \,{\mathrm e}^{4} \ln \relax (2)^{3} x^{3}+16 \ln \relax (2)^{4} x^{4}+48 \,{\mathrm e}^{4} \ln \relax (2)^{2} x^{3}+32 x^{4} \ln \relax (2)^{3}+8 x^{3} {\mathrm e}^{4} \ln \relax (2)+24 x^{4} \ln \relax (2)^{2}+8 x^{4} \ln \relax (2)+x^{4}\right ) {\mathrm e}^{x^{2}+8}}{16 x^{2} \ln \relax (2)^{4}}\) | \(155\) |
norman | \(\frac {{\mathrm e}^{8} {\mathrm e}^{16} \ln \relax (2)^{3} {\mathrm e}^{x^{2}}+\frac {{\mathrm e}^{8} {\mathrm e}^{4} \left (8 \ln \relax (2)^{3}+12 \ln \relax (2)^{2}+6 \ln \relax (2)+1\right ) x^{3} {\mathrm e}^{x^{2}}}{2}+\frac {{\mathrm e}^{8} \left (16 \ln \relax (2)^{4}+32 \ln \relax (2)^{3}+24 \ln \relax (2)^{2}+8 \ln \relax (2)+1\right ) x^{4} {\mathrm e}^{x^{2}}}{16 \ln \relax (2)}+2 \,{\mathrm e}^{8} {\mathrm e}^{12} \ln \relax (2)^{2} \left (1+2 \ln \relax (2)\right ) x \,{\mathrm e}^{x^{2}}+\frac {3 \ln \relax (2) \left ({\mathrm e}^{8}\right )^{2} \left (4 \ln \relax (2)^{2}+4 \ln \relax (2)+1\right ) x^{2} {\mathrm e}^{x^{2}}}{2}}{x^{2} \ln \relax (2)^{3}}\) | \(157\) |
gosper | \(\frac {{\mathrm e}^{8} \left (16 \ln \relax (2)^{4} {\mathrm e}^{16}+64 \,{\mathrm e}^{12} \ln \relax (2)^{4} x +32 \,{\mathrm e}^{12} \ln \relax (2)^{3} x +96 \,{\mathrm e}^{8} \ln \relax (2)^{4} x^{2}+96 \,{\mathrm e}^{8} \ln \relax (2)^{3} x^{2}+64 \,{\mathrm e}^{4} \ln \relax (2)^{4} x^{3}+24 \,{\mathrm e}^{8} \ln \relax (2)^{2} x^{2}+96 \,{\mathrm e}^{4} \ln \relax (2)^{3} x^{3}+16 \ln \relax (2)^{4} x^{4}+48 \,{\mathrm e}^{4} \ln \relax (2)^{2} x^{3}+32 x^{4} \ln \relax (2)^{3}+8 x^{3} {\mathrm e}^{4} \ln \relax (2)+24 x^{4} \ln \relax (2)^{2}+8 x^{4} \ln \relax (2)+x^{4}\right ) {\mathrm e}^{x^{2}}}{16 \ln \relax (2)^{4} x^{2}}\) | \(169\) |
default | \(\frac {{\mathrm e}^{8} {\mathrm e}^{x^{2}}+2 \,{\mathrm e}^{8} \left (\frac {x^{2} {\mathrm e}^{x^{2}}}{2}-\frac {{\mathrm e}^{x^{2}}}{2}\right )+8 \ln \relax (2) {\mathrm e}^{8} {\mathrm e}^{x^{2}} x^{2}+24 \ln \relax (2)^{2} {\mathrm e}^{8} {\mathrm e}^{x^{2}} x^{2}+32 \ln \relax (2)^{3} {\mathrm e}^{8} {\mathrm e}^{x^{2}} x^{2}+16 \ln \relax (2)^{4} {\mathrm e}^{8} {\mathrm e}^{x^{2}} x^{2}+\frac {16 \ln \relax (2)^{4} {\mathrm e}^{8} {\mathrm e}^{16} {\mathrm e}^{x^{2}}}{x^{2}}+\frac {32 \ln \relax (2)^{3} {\mathrm e}^{8} {\mathrm e}^{12} {\mathrm e}^{x^{2}}}{x}+\frac {64 \ln \relax (2)^{4} {\mathrm e}^{8} {\mathrm e}^{12} {\mathrm e}^{x^{2}}}{x}+24 \ln \relax (2)^{2} \left ({\mathrm e}^{8}\right )^{2} {\mathrm e}^{x^{2}}+96 \ln \relax (2)^{3} \left ({\mathrm e}^{8}\right )^{2} {\mathrm e}^{x^{2}}+96 \ln \relax (2)^{4} \left ({\mathrm e}^{8}\right )^{2} {\mathrm e}^{x^{2}}+8 \ln \relax (2) {\mathrm e}^{8} {\mathrm e}^{4} {\mathrm e}^{x^{2}} x +48 \ln \relax (2)^{2} {\mathrm e}^{8} {\mathrm e}^{4} {\mathrm e}^{x^{2}} x +96 \ln \relax (2)^{3} {\mathrm e}^{8} {\mathrm e}^{4} {\mathrm e}^{x^{2}} x +64 \ln \relax (2)^{4} {\mathrm e}^{8} {\mathrm e}^{4} {\mathrm e}^{x^{2}} x}{16 \ln \relax (2)^{4}}\) | \(288\) |
meijerg | \({\mathrm e}^{24} \left (\frac {1}{x^{2}}+1-2 \ln \relax (x )-i \pi -\frac {2 x^{2}+2}{2 x^{2}}+\frac {{\mathrm e}^{x^{2}}}{x^{2}}+\ln \left (-x^{2}\right )+\expIntegralEi \left (1, -x^{2}\right )\right )+\frac {\left (128 \ln \relax (2)^{4} {\mathrm e}^{20}+64 \ln \relax (2)^{3} {\mathrm e}^{20}+64 \ln \relax (2)^{4} {\mathrm e}^{12}+96 \ln \relax (2)^{3} {\mathrm e}^{12}+48 \ln \relax (2)^{2} {\mathrm e}^{12}+8 \,{\mathrm e}^{12} \ln \relax (2)\right ) \sqrt {\pi }\, \erfi \relax (x )}{32 \ln \relax (2)^{4}}+\frac {i \left (-64 \ln \relax (2)^{4} {\mathrm e}^{20}-32 \ln \relax (2)^{3} {\mathrm e}^{20}\right ) \left (\frac {2 i {\mathrm e}^{x^{2}}}{x}-2 i \sqrt {\pi }\, \erfi \relax (x )\right )}{32 \ln \relax (2)^{4}}+\frac {\left (32 \ln \relax (2)^{4} {\mathrm e}^{8}+64 \ln \relax (2)^{3} {\mathrm e}^{8}+48 \ln \relax (2)^{2} {\mathrm e}^{8}+16 \ln \relax (2) {\mathrm e}^{8}+2 \,{\mathrm e}^{8}\right ) \left (1-\frac {\left (-2 x^{2}+2\right ) {\mathrm e}^{x^{2}}}{2}\right )}{32 \ln \relax (2)^{4}}-\frac {\left (192 \ln \relax (2)^{4} {\mathrm e}^{16}+192 \ln \relax (2)^{3} {\mathrm e}^{16}+48 \,{\mathrm e}^{16} \ln \relax (2)^{2}+32 \ln \relax (2)^{4} {\mathrm e}^{8}+64 \ln \relax (2)^{3} {\mathrm e}^{8}+48 \ln \relax (2)^{2} {\mathrm e}^{8}+16 \ln \relax (2) {\mathrm e}^{8}+2 \,{\mathrm e}^{8}\right ) \left (1-{\mathrm e}^{x^{2}}\right )}{32 \ln \relax (2)^{4}}+{\mathrm e}^{24} \left (2 \ln \relax (x )+i \pi -\ln \left (-x^{2}\right )-\expIntegralEi \left (1, -x^{2}\right )\right )+\frac {i \left (128 \ln \relax (2)^{4} {\mathrm e}^{12}+192 \ln \relax (2)^{3} {\mathrm e}^{12}+96 \ln \relax (2)^{2} {\mathrm e}^{12}+16 \,{\mathrm e}^{12} \ln \relax (2)\right ) \left (-i x \,{\mathrm e}^{x^{2}}+\frac {i \sqrt {\pi }\, \erfi \relax (x )}{2}\right )}{32 \ln \relax (2)^{4}}\) | \(365\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [C] time = 0.43, size = 467, normalized size = 19.46 \begin {gather*} -\frac {64 i \, \sqrt {\pi } \operatorname {erf}\left (i \, x\right ) e^{20} \log \relax (2)^{4} + 32 i \, \sqrt {\pi } \operatorname {erf}\left (i \, x\right ) e^{12} \log \relax (2)^{4} - 16 \, {\rm Ei}\left (x^{2}\right ) e^{24} \log \relax (2)^{4} - 16 \, {\left (x^{2} e^{8} - e^{8}\right )} e^{\left (x^{2}\right )} \log \relax (2)^{4} + 16 \, e^{24} \Gamma \left (-1, -x^{2}\right ) \log \relax (2)^{4} + 32 i \, \sqrt {\pi } \operatorname {erf}\left (i \, x\right ) e^{20} \log \relax (2)^{3} + 48 i \, \sqrt {\pi } \operatorname {erf}\left (i \, x\right ) e^{12} \log \relax (2)^{3} - \frac {32 \, \sqrt {-x^{2}} e^{20} \Gamma \left (-\frac {1}{2}, -x^{2}\right ) \log \relax (2)^{4}}{x} - 32 \, {\left (x^{2} e^{8} - e^{8}\right )} e^{\left (x^{2}\right )} \log \relax (2)^{3} + 32 \, {\left (-i \, \sqrt {\pi } \operatorname {erf}\left (i \, x\right ) e^{12} - 2 \, x e^{\left (x^{2} + 12\right )}\right )} \log \relax (2)^{4} - 96 \, e^{\left (x^{2} + 16\right )} \log \relax (2)^{4} - 16 \, e^{\left (x^{2} + 8\right )} \log \relax (2)^{4} + 24 i \, \sqrt {\pi } \operatorname {erf}\left (i \, x\right ) e^{12} \log \relax (2)^{2} - \frac {16 \, \sqrt {-x^{2}} e^{20} \Gamma \left (-\frac {1}{2}, -x^{2}\right ) \log \relax (2)^{3}}{x} - 24 \, {\left (x^{2} e^{8} - e^{8}\right )} e^{\left (x^{2}\right )} \log \relax (2)^{2} + 48 \, {\left (-i \, \sqrt {\pi } \operatorname {erf}\left (i \, x\right ) e^{12} - 2 \, x e^{\left (x^{2} + 12\right )}\right )} \log \relax (2)^{3} - 96 \, e^{\left (x^{2} + 16\right )} \log \relax (2)^{3} - 32 \, e^{\left (x^{2} + 8\right )} \log \relax (2)^{3} + 4 i \, \sqrt {\pi } \operatorname {erf}\left (i \, x\right ) e^{12} \log \relax (2) - 8 \, {\left (x^{2} e^{8} - e^{8}\right )} e^{\left (x^{2}\right )} \log \relax (2) + 24 \, {\left (-i \, \sqrt {\pi } \operatorname {erf}\left (i \, x\right ) e^{12} - 2 \, x e^{\left (x^{2} + 12\right )}\right )} \log \relax (2)^{2} - 24 \, e^{\left (x^{2} + 16\right )} \log \relax (2)^{2} - 24 \, e^{\left (x^{2} + 8\right )} \log \relax (2)^{2} - {\left (x^{2} e^{8} - e^{8}\right )} e^{\left (x^{2}\right )} + 4 \, {\left (-i \, \sqrt {\pi } \operatorname {erf}\left (i \, x\right ) e^{12} - 2 \, x e^{\left (x^{2} + 12\right )}\right )} \log \relax (2) - 8 \, e^{\left (x^{2} + 8\right )} \log \relax (2) - e^{\left (x^{2} + 8\right )}}{16 \, \log \relax (2)^{4}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.12, size = 159, normalized size = 6.62 \begin {gather*} \frac {{\mathrm {e}}^{x^2}\,\left (3\,{\mathrm {e}}^{16}+12\,{\mathrm {e}}^{16}\,\ln \relax (2)+12\,{\mathrm {e}}^{16}\,{\ln \relax (2)}^2\right )}{2\,{\ln \relax (2)}^2}+\frac {{\mathrm {e}}^{x^2+24}\,{\ln \relax (2)}^4+2\,x\,{\mathrm {e}}^{x^2+20}\,{\ln \relax (2)}^3\,\left (2\,\ln \relax (2)+1\right )}{x^2\,{\ln \relax (2)}^4}+\frac {x\,{\mathrm {e}}^{x^2}\,\left (4\,{\mathrm {e}}^{12}\,\ln \relax (2)+24\,{\mathrm {e}}^{12}\,{\ln \relax (2)}^2+48\,{\mathrm {e}}^{12}\,{\ln \relax (2)}^3+32\,{\mathrm {e}}^{12}\,{\ln \relax (2)}^4\right )}{8\,{\ln \relax (2)}^4}+\frac {x^2\,{\mathrm {e}}^{x^2}\,\left (\frac {{\mathrm {e}}^8}{2}+4\,{\mathrm {e}}^8\,\ln \relax (2)+12\,{\mathrm {e}}^8\,{\ln \relax (2)}^2+16\,{\mathrm {e}}^8\,{\ln \relax (2)}^3+8\,{\mathrm {e}}^8\,{\ln \relax (2)}^4\right )}{8\,{\ln \relax (2)}^4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.39, size = 201, normalized size = 8.38 \begin {gather*} \frac {\left (x^{4} e^{8} + 16 x^{4} e^{8} \log {\relax (2 )}^{4} + 8 x^{4} e^{8} \log {\relax (2 )} + 32 x^{4} e^{8} \log {\relax (2 )}^{3} + 24 x^{4} e^{8} \log {\relax (2 )}^{2} + 8 x^{3} e^{12} \log {\relax (2 )} + 64 x^{3} e^{12} \log {\relax (2 )}^{4} + 48 x^{3} e^{12} \log {\relax (2 )}^{2} + 96 x^{3} e^{12} \log {\relax (2 )}^{3} + 24 x^{2} e^{16} \log {\relax (2 )}^{2} + 96 x^{2} e^{16} \log {\relax (2 )}^{4} + 96 x^{2} e^{16} \log {\relax (2 )}^{3} + 32 x e^{20} \log {\relax (2 )}^{3} + 64 x e^{20} \log {\relax (2 )}^{4} + 16 e^{24} \log {\relax (2 )}^{4}\right ) e^{x^{2}}}{16 x^{2} \log {\relax (2 )}^{4}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________