Optimal. Leaf size=28 \[ 1+e^x-\frac {x}{e^{\frac {10}{x}+2 x}-\frac {2}{x}+x} \]
________________________________________________________________________________________
Rubi [F] time = 1.29, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {4 x+e^{x+\frac {2 \left (10+2 x^2\right )}{x}} x^2+e^x \left (4-4 x^2+x^4\right )+e^{\frac {10+2 x^2}{x}} \left (-10 x-x^2+2 x^3+e^x \left (-4 x+2 x^3\right )\right )}{4-4 x^2+e^{\frac {2 \left (10+2 x^2\right )}{x}} x^2+x^4+e^{\frac {10+2 x^2}{x}} \left (-4 x+2 x^3\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {4 x+e^{\frac {20}{x}+5 x} x^2+2 e^{\frac {10}{x}+3 x} x \left (-2+x^2\right )+e^x \left (-2+x^2\right )^2+e^{\frac {10}{x}+2 x} x \left (-10-x+2 x^2\right )}{\left (2-e^{\frac {10}{x}+2 x} x-x^2\right )^2} \, dx\\ &=\int \left (e^x+\frac {-10-x+2 x^2}{-2+e^{\frac {10}{x}+2 x} x+x^2}-\frac {20-2 x-14 x^2-x^3+2 x^4}{\left (-2+e^{\frac {10}{x}+2 x} x+x^2\right )^2}\right ) \, dx\\ &=\int e^x \, dx+\int \frac {-10-x+2 x^2}{-2+e^{\frac {10}{x}+2 x} x+x^2} \, dx-\int \frac {20-2 x-14 x^2-x^3+2 x^4}{\left (-2+e^{\frac {10}{x}+2 x} x+x^2\right )^2} \, dx\\ &=e^x-\int \left (\frac {20}{\left (-2+e^{\frac {10}{x}+2 x} x+x^2\right )^2}-\frac {2 x}{\left (-2+e^{\frac {10}{x}+2 x} x+x^2\right )^2}-\frac {14 x^2}{\left (-2+e^{\frac {10}{x}+2 x} x+x^2\right )^2}-\frac {x^3}{\left (-2+e^{\frac {10}{x}+2 x} x+x^2\right )^2}+\frac {2 x^4}{\left (-2+e^{\frac {10}{x}+2 x} x+x^2\right )^2}\right ) \, dx+\int \left (-\frac {10}{-2+e^{\frac {10}{x}+2 x} x+x^2}-\frac {x}{-2+e^{\frac {10}{x}+2 x} x+x^2}+\frac {2 x^2}{-2+e^{\frac {10}{x}+2 x} x+x^2}\right ) \, dx\\ &=e^x+2 \int \frac {x}{\left (-2+e^{\frac {10}{x}+2 x} x+x^2\right )^2} \, dx-2 \int \frac {x^4}{\left (-2+e^{\frac {10}{x}+2 x} x+x^2\right )^2} \, dx+2 \int \frac {x^2}{-2+e^{\frac {10}{x}+2 x} x+x^2} \, dx-10 \int \frac {1}{-2+e^{\frac {10}{x}+2 x} x+x^2} \, dx+14 \int \frac {x^2}{\left (-2+e^{\frac {10}{x}+2 x} x+x^2\right )^2} \, dx-20 \int \frac {1}{\left (-2+e^{\frac {10}{x}+2 x} x+x^2\right )^2} \, dx+\int \frac {x^3}{\left (-2+e^{\frac {10}{x}+2 x} x+x^2\right )^2} \, dx-\int \frac {x}{-2+e^{\frac {10}{x}+2 x} x+x^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [C] time = 1.49, size = 901, normalized size = 32.18 \begin {gather*} \frac {\frac {2095 e^x \left (-1300-1030 x+946 x^2+661 x^3\right )}{4 \left (-20+2 x+14 x^2+x^3-2 x^4\right )^2}-\frac {16760 e^{\frac {10}{x}+3 x} x^3}{20-2 x-14 x^2-x^3+2 x^4}+\frac {e^x \left (390015+82526 x-110828 x^2+2612 x^3\right )}{80-8 x-56 x^2-4 x^3+8 x^4}-60060 \text {RootSum}\left [20-2 \text {$\#$1}-14 \text {$\#$1}^2-\text {$\#$1}^3+2 \text {$\#$1}^4\&,\frac {e^{\text {$\#$1}} \text {Ei}(x-\text {$\#$1})}{-2-28 \text {$\#$1}-3 \text {$\#$1}^2+8 \text {$\#$1}^3}\&\right ]-52674 \text {RootSum}\left [20-2 \text {$\#$1}-14 \text {$\#$1}^2-\text {$\#$1}^3+2 \text {$\#$1}^4\&,\frac {e^{\text {$\#$1}} \text {Ei}(x-\text {$\#$1}) \text {$\#$1}}{-2-28 \text {$\#$1}-3 \text {$\#$1}^2+8 \text {$\#$1}^3}\&\right ]+32550 \text {RootSum}\left [20-2 \text {$\#$1}-14 \text {$\#$1}^2-\text {$\#$1}^3+2 \text {$\#$1}^4\&,\frac {e^{\text {$\#$1}} \text {Ei}(x-\text {$\#$1}) \text {$\#$1}^2}{-2-28 \text {$\#$1}-3 \text {$\#$1}^2+8 \text {$\#$1}^3}\&\right ]-9033 \text {RootSum}\left [20-2 \text {$\#$1}-14 \text {$\#$1}^2-\text {$\#$1}^3+2 \text {$\#$1}^4\&,\frac {e^{\text {$\#$1}} \text {Ei}(x-\text {$\#$1}) \text {$\#$1}^3}{-2-28 \text {$\#$1}-3 \text {$\#$1}^2+8 \text {$\#$1}^3}\&\right ]}{16760}+\frac {\frac {16760 e^{\frac {20}{x}+5 x} x^4}{\left (-2+e^{\frac {10}{x}+2 x} x+x^2\right ) \left (20-2 x-14 x^2-x^3+2 x^4\right )}+\frac {33520 e^{\frac {10}{x}+3 x} x^3 \left (-2+x^2\right )}{\left (-2+e^{\frac {10}{x}+2 x} x+x^2\right ) \left (20-2 x-14 x^2-x^3+2 x^4\right )}+\frac {e^x \left (5434800-1018960 x-7183172 x^2+172792 x^3+3327352 x^4+275372 x^5-564053 x^6-51586 x^7+33520 x^8\right )}{\left (-20+2 x+14 x^2+x^3-2 x^4\right )^2}+\frac {16760 x^2 \left (-20+2 x+14 x^2+x^3-2 x^4+e^x \left (-2+x^2\right )^2\right )}{\left (-2+e^{\frac {10}{x}+2 x} x+x^2\right ) \left (20-2 x-14 x^2-x^3+2 x^4\right )}+60060 \text {RootSum}\left [20-2 \text {$\#$1}-14 \text {$\#$1}^2-\text {$\#$1}^3+2 \text {$\#$1}^4\&,\frac {e^{\text {$\#$1}} \text {Ei}(x-\text {$\#$1})}{-2-28 \text {$\#$1}-3 \text {$\#$1}^2+8 \text {$\#$1}^3}\&\right ]+52674 \text {RootSum}\left [20-2 \text {$\#$1}-14 \text {$\#$1}^2-\text {$\#$1}^3+2 \text {$\#$1}^4\&,\frac {e^{\text {$\#$1}} \text {Ei}(x-\text {$\#$1}) \text {$\#$1}}{-2-28 \text {$\#$1}-3 \text {$\#$1}^2+8 \text {$\#$1}^3}\&\right ]-32550 \text {RootSum}\left [20-2 \text {$\#$1}-14 \text {$\#$1}^2-\text {$\#$1}^3+2 \text {$\#$1}^4\&,\frac {e^{\text {$\#$1}} \text {Ei}(x-\text {$\#$1}) \text {$\#$1}^2}{-2-28 \text {$\#$1}-3 \text {$\#$1}^2+8 \text {$\#$1}^3}\&\right ]+9033 \text {RootSum}\left [20-2 \text {$\#$1}-14 \text {$\#$1}^2-\text {$\#$1}^3+2 \text {$\#$1}^4\&,\frac {e^{\text {$\#$1}} \text {Ei}(x-\text {$\#$1}) \text {$\#$1}^3}{-2-28 \text {$\#$1}-3 \text {$\#$1}^2+8 \text {$\#$1}^3}\&\right ]}{16760} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.95, size = 82, normalized size = 2.93 \begin {gather*} -\frac {x^{2} e^{\left (\frac {4 \, {\left (x^{2} + 5\right )}}{x}\right )} - {\left (x^{2} + x e^{\left (\frac {2 \, {\left (x^{2} + 5\right )}}{x}\right )} - 2\right )} e^{\left (\frac {5 \, {\left (x^{2} + 4\right )}}{x}\right )}}{x e^{\left (\frac {6 \, {\left (x^{2} + 5\right )}}{x}\right )} + {\left (x^{2} - 2\right )} e^{\left (\frac {4 \, {\left (x^{2} + 5\right )}}{x}\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.28, size = 304, normalized size = 10.86 \begin {gather*} \frac {2 \, x^{6} e^{x} - 2 \, x^{6} - x^{5} e^{x} + 2 \, x^{5} e^{\left (\frac {3 \, x^{2} + 10}{x}\right )} + x^{5} - x^{4} e^{\left (x + \frac {4 \, {\left (x^{2} + 5\right )}}{x}\right )} - x^{4} e^{\left (x + \frac {2 \, {\left (x^{2} + 5\right )}}{x}\right )} - 18 \, x^{4} e^{x} + x^{4} e^{\left (\frac {5 \, {\left (x^{2} + 4\right )}}{x}\right )} + 14 \, x^{4} - 10 \, x^{3} e^{\left (x + \frac {2 \, {\left (x^{2} + 5\right )}}{x}\right )} - 4 \, x^{3} e^{\left (\frac {3 \, x^{2} + 10}{x}\right )} + 2 \, x^{3} - 2 \, x^{2} e^{\left (x + \frac {2 \, {\left (x^{2} + 5\right )}}{x}\right )} + 48 \, x^{2} e^{x} - 20 \, x^{2} + 20 \, x e^{\left (x + \frac {2 \, {\left (x^{2} + 5\right )}}{x}\right )} + 4 \, x e^{x} - 40 \, e^{x}}{2 \, x^{6} + 2 \, x^{5} e^{\left (\frac {2 \, {\left (x^{2} + 5\right )}}{x}\right )} - x^{5} - x^{4} e^{\left (\frac {2 \, {\left (x^{2} + 5\right )}}{x}\right )} - 18 \, x^{4} - 14 \, x^{3} e^{\left (\frac {2 \, {\left (x^{2} + 5\right )}}{x}\right )} - 2 \, x^{2} e^{\left (\frac {2 \, {\left (x^{2} + 5\right )}}{x}\right )} + 48 \, x^{2} + 20 \, x e^{\left (\frac {2 \, {\left (x^{2} + 5\right )}}{x}\right )} + 4 \, x - 40} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.16, size = 29, normalized size = 1.04
method | result | size |
risch | \({\mathrm e}^{x}-\frac {x^{2}}{x^{2}+x \,{\mathrm e}^{\frac {2 x^{2}+10}{x}}-2}\) | \(29\) |
norman | \(\frac {{\mathrm e}^{x} x^{2}+x \,{\mathrm e}^{\frac {2 x^{2}+10}{x}}+{\mathrm e}^{x} x \,{\mathrm e}^{\frac {2 x^{2}+10}{x}}-2 \,{\mathrm e}^{x}-2}{x^{2}+x \,{\mathrm e}^{\frac {2 x^{2}+10}{x}}-2}\) | \(65\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.40, size = 47, normalized size = 1.68 \begin {gather*} -\frac {x^{2} - x e^{\left (3 \, x + \frac {10}{x}\right )} - {\left (x^{2} - 2\right )} e^{x}}{x^{2} + x e^{\left (2 \, x + \frac {10}{x}\right )} - 2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.45, size = 27, normalized size = 0.96 \begin {gather*} {\mathrm {e}}^x-\frac {x^2}{x^2+x\,{\mathrm {e}}^{2\,x}\,{\mathrm {e}}^{10/x}-2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.23, size = 22, normalized size = 0.79 \begin {gather*} - \frac {x^{2}}{x^{2} + x e^{\frac {2 x^{2} + 10}{x}} - 2} + e^{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________