Optimal. Leaf size=18 \[ \frac {3}{5} \left (-\frac {5}{3}+e^{225 \log ^2(x)}\right )^2 \]
________________________________________________________________________________________
Rubi [A] time = 0.13, antiderivative size = 23, normalized size of antiderivative = 1.28, number of steps used = 6, number of rules used = 4, integrand size = 29, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.138, Rules used = {14, 2276, 2204, 2209} \begin {gather*} \frac {3}{5} e^{450 \log ^2(x)}-2 e^{225 \log ^2(x)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 14
Rule 2204
Rule 2209
Rule 2276
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (-\frac {900 e^{225 \log ^2(x)} \log (x)}{x}+\frac {540 e^{450 \log ^2(x)} \log (x)}{x}\right ) \, dx\\ &=540 \int \frac {e^{450 \log ^2(x)} \log (x)}{x} \, dx-900 \int \frac {e^{225 \log ^2(x)} \log (x)}{x} \, dx\\ &=540 \operatorname {Subst}\left (\int e^{450 x^2} x \, dx,x,\log (x)\right )-900 \operatorname {Subst}\left (\int e^{225 x^2} x \, dx,x,\log (x)\right )\\ &=-2 e^{225 \log ^2(x)}+\frac {3}{5} e^{450 \log ^2(x)}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.02, size = 18, normalized size = 1.00 \begin {gather*} \frac {1}{15} \left (-5+3 e^{225 \log ^2(x)}\right )^2 \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.67, size = 19, normalized size = 1.06 \begin {gather*} \frac {3}{5} \, e^{\left (450 \, \log \relax (x)^{2}\right )} - 2 \, e^{\left (225 \, \log \relax (x)^{2}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.23, size = 19, normalized size = 1.06 \begin {gather*} \frac {3}{5} \, e^{\left (450 \, \log \relax (x)^{2}\right )} - 2 \, e^{\left (225 \, \log \relax (x)^{2}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.07, size = 20, normalized size = 1.11
method | result | size |
risch | \(-2 \,{\mathrm e}^{225 \ln \relax (x )^{2}}+\frac {3 \,{\mathrm e}^{450 \ln \relax (x )^{2}}}{5}\) | \(20\) |
derivativedivides | \(-2 \,{\mathrm e}^{225 \ln \relax (x )^{2}}+\frac {3 \,{\mathrm e}^{450 \ln \relax (x )^{2}}}{5}\) | \(22\) |
default | \(-2 \,{\mathrm e}^{225 \ln \relax (x )^{2}}+\frac {3 \,{\mathrm e}^{450 \ln \relax (x )^{2}}}{5}\) | \(22\) |
norman | \(-2 \,{\mathrm e}^{225 \ln \relax (x )^{2}}+\frac {3 \,{\mathrm e}^{450 \ln \relax (x )^{2}}}{5}\) | \(22\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 1.18, size = 19, normalized size = 1.06 \begin {gather*} \frac {3}{5} \, e^{\left (450 \, \log \relax (x)^{2}\right )} - 2 \, e^{\left (225 \, \log \relax (x)^{2}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 2.97, size = 20, normalized size = 1.11 \begin {gather*} \frac {{\mathrm {e}}^{225\,{\ln \relax (x)}^2}\,\left (3\,{\mathrm {e}}^{225\,{\ln \relax (x)}^2}-10\right )}{5} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.28, size = 20, normalized size = 1.11 \begin {gather*} \frac {3 e^{450 \log {\relax (x )}^{2}}}{5} - 2 e^{225 \log {\relax (x )}^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________