Optimal. Leaf size=20 \[ 1+\frac {-2+e^{(-e+x)^2}+x+\log (4)}{x^2} \]
________________________________________________________________________________________
Rubi [B] time = 0.11, antiderivative size = 60, normalized size of antiderivative = 3.00, number of steps used = 4, number of rules used = 3, integrand size = 38, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.079, Rules used = {14, 2288, 37} \begin {gather*} \frac {e^{x^2-2 e x+e^2} \left (e x-x^2\right )}{(e-x) x^3}-\frac {(-x+4-\log (16))^2}{2 x^2 (4-\log (16))} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 14
Rule 37
Rule 2288
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (\frac {2 e^{e^2-2 e x+x^2} \left (-1-e x+x^2\right )}{x^3}+\frac {4-x-\log (16)}{x^3}\right ) \, dx\\ &=2 \int \frac {e^{e^2-2 e x+x^2} \left (-1-e x+x^2\right )}{x^3} \, dx+\int \frac {4-x-\log (16)}{x^3} \, dx\\ &=\frac {e^{e^2-2 e x+x^2} \left (e x-x^2\right )}{(e-x) x^3}-\frac {(4-x-\log (16))^2}{2 x^2 (4-\log (16))}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.11, size = 25, normalized size = 1.25 \begin {gather*} \frac {-4+2 e^{(e-x)^2}+2 x+\log (16)}{2 x^2} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.62, size = 23, normalized size = 1.15 \begin {gather*} \frac {x + e^{\left (x^{2} - 2 \, x e + e^{2}\right )} + 2 \, \log \relax (2) - 2}{x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.21, size = 34, normalized size = 1.70 \begin {gather*} \frac {{\left (x e + 2 \, e \log \relax (2) - 2 \, e + e^{\left (x^{2} - 2 \, x e + e^{2} + 1\right )}\right )} e^{\left (-1\right )}}{x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.09, size = 26, normalized size = 1.30
method | result | size |
norman | \(\frac {x +2 \ln \relax (2)-2+{\mathrm e}^{{\mathrm e}^{2}-2 x \,{\mathrm e}+x^{2}}}{x^{2}}\) | \(26\) |
risch | \(\frac {x +2 \ln \relax (2)-2}{x^{2}}+\frac {{\mathrm e}^{{\mathrm e}^{2}-2 x \,{\mathrm e}+x^{2}}}{x^{2}}\) | \(29\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.41, size = 32, normalized size = 1.60 \begin {gather*} \frac {1}{x} + \frac {e^{\left (x^{2} - 2 \, x e + e^{2}\right )}}{x^{2}} + \frac {2 \, \log \relax (2)}{x^{2}} - \frac {2}{x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.12, size = 21, normalized size = 1.05 \begin {gather*} \frac {x+{\mathrm {e}}^{x^2-2\,\mathrm {e}\,x+{\mathrm {e}}^2}+\ln \relax (4)-2}{x^2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.21, size = 29, normalized size = 1.45 \begin {gather*} - \frac {- x - 2 \log {\relax (2 )} + 2}{x^{2}} + \frac {e^{x^{2} - 2 e x + e^{2}}}{x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________