Optimal. Leaf size=19 \[ 4 \left (\log \left (\frac {x}{2}\right )-\frac {15}{\log (-7+2 x)}\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.21, antiderivative size = 15, normalized size of antiderivative = 0.79, number of steps used = 7, number of rules used = 6, integrand size = 38, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.158, Rules used = {1593, 6688, 12, 2390, 2302, 30} \begin {gather*} 4 \log (x)-\frac {60}{\log (2 x-7)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 30
Rule 1593
Rule 2302
Rule 2390
Rule 6688
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {120 x+(-28+8 x) \log ^2(-7+2 x)}{x (-7+2 x) \log ^2(-7+2 x)} \, dx\\ &=\int 4 \left (\frac {1}{x}+\frac {30}{(-7+2 x) \log ^2(-7+2 x)}\right ) \, dx\\ &=4 \int \left (\frac {1}{x}+\frac {30}{(-7+2 x) \log ^2(-7+2 x)}\right ) \, dx\\ &=4 \log (x)+120 \int \frac {1}{(-7+2 x) \log ^2(-7+2 x)} \, dx\\ &=4 \log (x)+60 \operatorname {Subst}\left (\int \frac {1}{x \log ^2(x)} \, dx,x,-7+2 x\right )\\ &=4 \log (x)+60 \operatorname {Subst}\left (\int \frac {1}{x^2} \, dx,x,\log (-7+2 x)\right )\\ &=4 \log (x)-\frac {60}{\log (-7+2 x)}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.01, size = 15, normalized size = 0.79 \begin {gather*} 4 \left (\log (x)-\frac {15}{\log (-7+2 x)}\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.50, size = 21, normalized size = 1.11 \begin {gather*} \frac {4 \, {\left (\log \left (2 \, x - 7\right ) \log \relax (x) - 15\right )}}{\log \left (2 \, x - 7\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.15, size = 15, normalized size = 0.79 \begin {gather*} -\frac {60}{\log \left (2 \, x - 7\right )} + 4 \, \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.08, size = 16, normalized size = 0.84
method | result | size |
norman | \(-\frac {60}{\ln \left (2 x -7\right )}+4 \ln \relax (x )\) | \(16\) |
risch | \(-\frac {60}{\ln \left (2 x -7\right )}+4 \ln \relax (x )\) | \(16\) |
derivativedivides | \(4 \ln \left (2 x \right )-\frac {60}{\ln \left (2 x -7\right )}\) | \(18\) |
default | \(4 \ln \left (2 x \right )-\frac {60}{\ln \left (2 x -7\right )}\) | \(18\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.38, size = 15, normalized size = 0.79 \begin {gather*} -\frac {60}{\log \left (2 \, x - 7\right )} + 4 \, \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.13, size = 15, normalized size = 0.79 \begin {gather*} 4\,\ln \relax (x)-\frac {60}{\ln \left (2\,x-7\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.10, size = 12, normalized size = 0.63 \begin {gather*} 4 \log {\relax (x )} - \frac {60}{\log {\left (2 x - 7 \right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________