Optimal. Leaf size=27 \[ \frac {5 \left (\frac {3}{e}+x^2\right ) \log \left (\frac {4}{3 x \log (2)}\right )}{\log (x)} \]
________________________________________________________________________________________
Rubi [A] time = 0.95, antiderivative size = 39, normalized size of antiderivative = 1.44, number of steps used = 23, number of rules used = 11, integrand size = 62, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.177, Rules used = {12, 6742, 2353, 2302, 29, 2309, 2178, 30, 2306, 2366, 6482} \begin {gather*} \frac {5 x^2 \log \left (\frac {4}{x \log (8)}\right )}{\log (x)}+\frac {15 \log \left (\frac {4}{x \log (8)}\right )}{e \log (x)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 29
Rule 30
Rule 2178
Rule 2302
Rule 2306
Rule 2309
Rule 2353
Rule 2366
Rule 6482
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {\int \frac {\left (-15-5 e x^2\right ) \log \left (\frac {4}{3 x \log (2)}\right )+\log (x) \left (-15-5 e x^2+10 e x^2 \log \left (\frac {4}{3 x \log (2)}\right )\right )}{x \log ^2(x)} \, dx}{e}\\ &=\frac {\int \left (-\frac {5 \left (3+e x^2\right )}{x \log (x)}+\frac {5 \left (-3-e x^2+2 e x^2 \log (x)\right ) \log \left (\frac {4}{x \log (8)}\right )}{x \log ^2(x)}\right ) \, dx}{e}\\ &=-\frac {5 \int \frac {3+e x^2}{x \log (x)} \, dx}{e}+\frac {5 \int \frac {\left (-3-e x^2+2 e x^2 \log (x)\right ) \log \left (\frac {4}{x \log (8)}\right )}{x \log ^2(x)} \, dx}{e}\\ &=-\frac {5 \int \left (\frac {3}{x \log (x)}+\frac {e x}{\log (x)}\right ) \, dx}{e}+\frac {5 \int \left (-\frac {3 \log \left (\frac {4}{x \log (8)}\right )}{x \log ^2(x)}-\frac {e x \log \left (\frac {4}{x \log (8)}\right )}{\log ^2(x)}+\frac {2 e x \log \left (\frac {4}{x \log (8)}\right )}{\log (x)}\right ) \, dx}{e}\\ &=-\left (5 \int \frac {x}{\log (x)} \, dx\right )-5 \int \frac {x \log \left (\frac {4}{x \log (8)}\right )}{\log ^2(x)} \, dx+10 \int \frac {x \log \left (\frac {4}{x \log (8)}\right )}{\log (x)} \, dx-\frac {15 \int \frac {1}{x \log (x)} \, dx}{e}-\frac {15 \int \frac {\log \left (\frac {4}{x \log (8)}\right )}{x \log ^2(x)} \, dx}{e}\\ &=\frac {15 \log \left (\frac {4}{x \log (8)}\right )}{e \log (x)}+\frac {5 x^2 \log \left (\frac {4}{x \log (8)}\right )}{\log (x)}-5 \int \left (\frac {2 \text {Ei}(2 \log (x))}{x}-\frac {x}{\log (x)}\right ) \, dx-5 \operatorname {Subst}\left (\int \frac {e^{2 x}}{x} \, dx,x,\log (x)\right )+10 \int \frac {\text {Ei}(2 \log (x))}{x} \, dx+\frac {15 \int \frac {1}{x \log (x)} \, dx}{e}-\frac {15 \operatorname {Subst}\left (\int \frac {1}{x} \, dx,x,\log (x)\right )}{e}\\ &=-5 \text {Ei}(2 \log (x))+\frac {15 \log \left (\frac {4}{x \log (8)}\right )}{e \log (x)}+\frac {5 x^2 \log \left (\frac {4}{x \log (8)}\right )}{\log (x)}-\frac {15 \log (\log (x))}{e}+5 \int \frac {x}{\log (x)} \, dx-10 \int \frac {\text {Ei}(2 \log (x))}{x} \, dx+10 \operatorname {Subst}(\int \text {Ei}(2 x) \, dx,x,\log (x))+\frac {15 \operatorname {Subst}\left (\int \frac {1}{x} \, dx,x,\log (x)\right )}{e}\\ &=-5 x^2-5 \text {Ei}(2 \log (x))+10 \text {Ei}(2 \log (x)) \log (x)+\frac {15 \log \left (\frac {4}{x \log (8)}\right )}{e \log (x)}+\frac {5 x^2 \log \left (\frac {4}{x \log (8)}\right )}{\log (x)}+5 \operatorname {Subst}\left (\int \frac {e^{2 x}}{x} \, dx,x,\log (x)\right )-10 \operatorname {Subst}(\int \text {Ei}(2 x) \, dx,x,\log (x))\\ &=\frac {15 \log \left (\frac {4}{x \log (8)}\right )}{e \log (x)}+\frac {5 x^2 \log \left (\frac {4}{x \log (8)}\right )}{\log (x)}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.15, size = 29, normalized size = 1.07 \begin {gather*} \frac {15+\frac {5 \left (3+e x^2\right ) \log \left (\frac {4}{x \log (8)}\right )}{\log (x)}}{e} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.88, size = 55, normalized size = 2.04 \begin {gather*} \frac {5 \, {\left (x^{2} e \log \left (\frac {4}{3 \, x \log \relax (2)}\right ) + 3 \, \log \left (\frac {4}{3 \, \log \relax (2)}\right )\right )}}{e \log \left (\frac {4}{3 \, \log \relax (2)}\right ) - e \log \left (\frac {4}{3 \, x \log \relax (2)}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.16, size = 56, normalized size = 2.07 \begin {gather*} -\frac {5 \, {\left (x^{2} e \log \relax (3) - 2 \, x^{2} e \log \relax (2) + x^{2} e \log \relax (x) + x^{2} e \log \left (\log \relax (2)\right ) + 3 \, \log \relax (3) - 6 \, \log \relax (2) + 3 \, \log \left (\log \relax (2)\right )\right )} e^{\left (-1\right )}}{\log \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [B] time = 0.40, size = 57, normalized size = 2.11
method | result | size |
risch | \(-5 x^{2}+\frac {5 \,{\mathrm e}^{-1} \left (4 \ln \relax (2) {\mathrm e} x^{2}-2 x^{2} {\mathrm e} \ln \left (\ln \relax (2)\right )-2 x^{2} {\mathrm e} \ln \relax (3)+12 \ln \relax (2)-6 \ln \left (\ln \relax (2)\right )-6 \ln \relax (3)\right )}{2 \ln \relax (x )}\) | \(57\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [C] time = 0.38, size = 108, normalized size = 4.00 \begin {gather*} 5 \, {\left (2 \, {\rm Ei}\left (2 \, \log \relax (x)\right ) e \log \left (\frac {4}{3 \, x \log \relax (2)}\right ) - 2 \, e \Gamma \left (-1, -2 \, \log \relax (x)\right ) \log \left (\frac {4}{3 \, x \log \relax (2)}\right ) - {\left (x^{2} - 2 \, {\rm Ei}\left (2 \, \log \relax (x)\right ) \log \relax (x)\right )} e - {\left (2 \, \Gamma \left (-1, -2 \, \log \relax (x)\right ) \log \relax (x) - {\rm Ei}\left (2 \, \log \relax (x)\right )\right )} e - {\rm Ei}\left (2 \, \log \relax (x)\right ) e + \frac {3 \, \log \left (\frac {4}{3 \, x \log \relax (2)}\right )}{\log \relax (x)}\right )} e^{\left (-1\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.23, size = 57, normalized size = 2.11 \begin {gather*} \frac {x^2\,\left (5\,\ln \left (\frac {1}{x}\right )+10\,\ln \relax (2)-5\,\ln \relax (3)-5\,\ln \left (\ln \relax (2)\right )\right )}{\ln \relax (x)}+\frac {15\,{\mathrm {e}}^{-1}\,\left (\ln \left (\frac {1}{x}\right )+2\,\ln \relax (2)-\ln \relax (3)-\ln \left (\ln \relax (2)\right )+\ln \relax (x)\right )}{\ln \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.27, size = 65, normalized size = 2.41 \begin {gather*} - 5 x^{2} + \frac {- 5 e x^{2} \log {\relax (3 )} - 5 e x^{2} \log {\left (\log {\relax (2 )} \right )} + 10 e x^{2} \log {\relax (2 )} - 15 \log {\relax (3 )} - 15 \log {\left (\log {\relax (2 )} \right )} + 30 \log {\relax (2 )}}{e \log {\relax (x )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________