Optimal. Leaf size=17 \[ \frac {5 x}{-4+\frac {625}{2 x^4}+x+\log (x)} \]
________________________________________________________________________________________
Rubi [F] time = 1.02, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {31250 x^4-100 x^8+20 x^8 \log (x)}{390625-10000 x^4+2500 x^5+64 x^8-32 x^9+4 x^{10}+\left (2500 x^4-32 x^8+8 x^9\right ) \log (x)+4 x^8 \log ^2(x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {10 x^4 \left (3125-10 x^4+2 x^4 \log (x)\right )}{\left (625-8 x^4+2 x^5+2 x^4 \log (x)\right )^2} \, dx\\ &=10 \int \frac {x^4 \left (3125-10 x^4+2 x^4 \log (x)\right )}{\left (625-8 x^4+2 x^5+2 x^4 \log (x)\right )^2} \, dx\\ &=10 \int \left (-\frac {2 x^4 \left (-1250+x^4+x^5\right )}{\left (625-8 x^4+2 x^5+2 x^4 \log (x)\right )^2}+\frac {x^4}{625-8 x^4+2 x^5+2 x^4 \log (x)}\right ) \, dx\\ &=10 \int \frac {x^4}{625-8 x^4+2 x^5+2 x^4 \log (x)} \, dx-20 \int \frac {x^4 \left (-1250+x^4+x^5\right )}{\left (625-8 x^4+2 x^5+2 x^4 \log (x)\right )^2} \, dx\\ &=10 \int \frac {x^4}{625-8 x^4+2 x^5+2 x^4 \log (x)} \, dx-20 \int \left (-\frac {1250 x^4}{\left (625-8 x^4+2 x^5+2 x^4 \log (x)\right )^2}+\frac {x^8}{\left (625-8 x^4+2 x^5+2 x^4 \log (x)\right )^2}+\frac {x^9}{\left (625-8 x^4+2 x^5+2 x^4 \log (x)\right )^2}\right ) \, dx\\ &=10 \int \frac {x^4}{625-8 x^4+2 x^5+2 x^4 \log (x)} \, dx-20 \int \frac {x^8}{\left (625-8 x^4+2 x^5+2 x^4 \log (x)\right )^2} \, dx-20 \int \frac {x^9}{\left (625-8 x^4+2 x^5+2 x^4 \log (x)\right )^2} \, dx+25000 \int \frac {x^4}{\left (625-8 x^4+2 x^5+2 x^4 \log (x)\right )^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 2.12, size = 26, normalized size = 1.53 \begin {gather*} \frac {10 x^5}{625-8 x^4+2 x^5+2 x^4 \log (x)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.46, size = 26, normalized size = 1.53 \begin {gather*} \frac {10 \, x^{5}}{2 \, x^{5} + 2 \, x^{4} \log \relax (x) - 8 \, x^{4} + 625} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.18, size = 26, normalized size = 1.53 \begin {gather*} \frac {10 \, x^{5}}{2 \, x^{5} + 2 \, x^{4} \log \relax (x) - 8 \, x^{4} + 625} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.02, size = 27, normalized size = 1.59
method | result | size |
risch | \(\frac {10 x^{5}}{2 x^{4} \ln \relax (x )+2 x^{5}-8 x^{4}+625}\) | \(27\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.38, size = 26, normalized size = 1.53 \begin {gather*} \frac {10 \, x^{5}}{2 \, x^{5} + 2 \, x^{4} \log \relax (x) - 8 \, x^{4} + 625} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.15, size = 26, normalized size = 1.53 \begin {gather*} \frac {10\,x^5}{2\,x^4\,\ln \relax (x)-8\,x^4+2\,x^5+625} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.16, size = 24, normalized size = 1.41 \begin {gather*} \frac {10 x^{5}}{2 x^{5} + 2 x^{4} \log {\relax (x )} - 8 x^{4} + 625} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________