Optimal. Leaf size=26 \[ -2+e^{4 \left (e^x+x\right )} x \log ^4\left (\frac {3}{\log (4) \log (x)}\right ) \]
________________________________________________________________________________________
Rubi [F] time = 2.28, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-4 e^{4 e^x+4 x} \log ^3\left (\frac {3}{\log (4) \log (x)}\right )+e^{4 e^x+4 x} \left (1+4 x+4 e^x x\right ) \log (x) \log ^4\left (\frac {3}{\log (4) \log (x)}\right )}{\log (x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (4 e^{4 e^x+5 x} x \log ^4\left (\frac {3}{\log (4) \log (x)}\right )+\frac {e^{4 \left (e^x+x\right )} \log ^3\left (\frac {3}{\log (4) \log (x)}\right ) \left (-4+\log (x) \log \left (\frac {3}{\log (4) \log (x)}\right )+4 x \log (x) \log \left (\frac {3}{\log (4) \log (x)}\right )\right )}{\log (x)}\right ) \, dx\\ &=4 \int e^{4 e^x+5 x} x \log ^4\left (\frac {3}{\log (4) \log (x)}\right ) \, dx+\int \frac {e^{4 \left (e^x+x\right )} \log ^3\left (\frac {3}{\log (4) \log (x)}\right ) \left (-4+\log (x) \log \left (\frac {3}{\log (4) \log (x)}\right )+4 x \log (x) \log \left (\frac {3}{\log (4) \log (x)}\right )\right )}{\log (x)} \, dx\\ &=4 \int e^{4 e^x+5 x} x \log ^4\left (\frac {3}{\log (4) \log (x)}\right ) \, dx+\int \frac {e^{4 \left (e^x+x\right )} \log ^3\left (\frac {3}{\log (4) \log (x)}\right ) \left (-4+(1+4 x) \log (x) \log \left (\frac {3}{\log (4) \log (x)}\right )\right )}{\log (x)} \, dx\\ &=4 \int e^{4 e^x+5 x} x \log ^4\left (\frac {3}{\log (4) \log (x)}\right ) \, dx+\int \left (-\frac {4 e^{4 \left (e^x+x\right )} \log ^3\left (\frac {3}{\log (4) \log (x)}\right )}{\log (x)}+e^{4 \left (e^x+x\right )} (1+4 x) \log ^4\left (\frac {3}{\log (4) \log (x)}\right )\right ) \, dx\\ &=-\left (4 \int \frac {e^{4 \left (e^x+x\right )} \log ^3\left (\frac {3}{\log (4) \log (x)}\right )}{\log (x)} \, dx\right )+4 \int e^{4 e^x+5 x} x \log ^4\left (\frac {3}{\log (4) \log (x)}\right ) \, dx+\int e^{4 \left (e^x+x\right )} (1+4 x) \log ^4\left (\frac {3}{\log (4) \log (x)}\right ) \, dx\\ &=-\left (4 \int \frac {e^{4 \left (e^x+x\right )} \log ^3\left (\frac {3}{\log (4) \log (x)}\right )}{\log (x)} \, dx\right )+4 \int e^{4 e^x+5 x} x \log ^4\left (\frac {3}{\log (4) \log (x)}\right ) \, dx+\int \left (e^{4 \left (e^x+x\right )} \log ^4\left (\frac {3}{\log (4) \log (x)}\right )+4 e^{4 \left (e^x+x\right )} x \log ^4\left (\frac {3}{\log (4) \log (x)}\right )\right ) \, dx\\ &=-\left (4 \int \frac {e^{4 \left (e^x+x\right )} \log ^3\left (\frac {3}{\log (4) \log (x)}\right )}{\log (x)} \, dx\right )+4 \int e^{4 \left (e^x+x\right )} x \log ^4\left (\frac {3}{\log (4) \log (x)}\right ) \, dx+4 \int e^{4 e^x+5 x} x \log ^4\left (\frac {3}{\log (4) \log (x)}\right ) \, dx+\int e^{4 \left (e^x+x\right )} \log ^4\left (\frac {3}{\log (4) \log (x)}\right ) \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 1.39, size = 26, normalized size = 1.00 \begin {gather*} e^{4 e^x+4 x} x \log ^4\left (\frac {3}{\log (4) \log (x)}\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.92, size = 24, normalized size = 0.92 \begin {gather*} x e^{\left (4 \, x + 4 \, e^{x}\right )} \log \left (\frac {3}{2 \, \log \relax (2) \log \relax (x)}\right )^{4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {{\left (4 \, x e^{x} + 4 \, x + 1\right )} e^{\left (4 \, x + 4 \, e^{x}\right )} \log \relax (x) \log \left (\frac {3}{2 \, \log \relax (2) \log \relax (x)}\right )^{4} - 4 \, e^{\left (4 \, x + 4 \, e^{x}\right )} \log \left (\frac {3}{2 \, \log \relax (2) \log \relax (x)}\right )^{3}}{\log \relax (x)}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [B] time = 1.09, size = 381, normalized size = 14.65
method | result | size |
risch | \({\mathrm e}^{4 \,{\mathrm e}^{x}+4 x} x \ln \left (\ln \relax (x )\right )^{4}+2 \left (2 x \ln \relax (2)-2 x \ln \relax (3)+2 x \ln \left (\ln \relax (2)\right )\right ) {\mathrm e}^{4 \,{\mathrm e}^{x}+4 x} \ln \left (\ln \relax (x )\right )^{3}+\frac {3 \left (4 x \ln \relax (2)^{2}+4 x \ln \relax (3)^{2}+4 x \ln \left (\ln \relax (2)\right )^{2}-8 x \ln \relax (2) \ln \relax (3)+8 \ln \relax (2) \ln \left (\ln \relax (2)\right ) x -8 \ln \relax (3) \ln \left (\ln \relax (2)\right ) x \right ) {\mathrm e}^{4 \,{\mathrm e}^{x}+4 x} \ln \left (\ln \relax (x )\right )^{2}}{2}+\frac {\left (24 x \ln \relax (2) \ln \relax (3)^{2}-8 x \ln \relax (3)^{3}+8 x \ln \relax (2)^{3}+8 \ln \left (\ln \relax (2)\right )^{3} x -48 \ln \relax (2) \ln \relax (3) \ln \left (\ln \relax (2)\right ) x +24 \ln \relax (3)^{2} \ln \left (\ln \relax (2)\right ) x -24 \ln \relax (3) \ln \left (\ln \relax (2)\right )^{2} x -24 \ln \relax (2)^{2} \ln \relax (3) x +24 \ln \relax (2)^{2} \ln \left (\ln \relax (2)\right ) x +24 \ln \relax (2) \ln \left (\ln \relax (2)\right )^{2} x \right ) {\mathrm e}^{4 \,{\mathrm e}^{x}+4 x} \ln \left (\ln \relax (x )\right )}{2}+\frac {\left (-64 x \ln \relax (3) \ln \relax (2)^{3}+16 x \ln \relax (2)^{4}+16 x \ln \relax (3)^{4}+16 \ln \left (\ln \relax (2)\right )^{4} x -192 \ln \relax (2)^{2} \ln \relax (3) \ln \left (\ln \relax (2)\right ) x +192 \ln \relax (2) \ln \relax (3)^{2} \ln \left (\ln \relax (2)\right ) x -192 \ln \relax (2) \ln \relax (3) \ln \left (\ln \relax (2)\right )^{2} x +64 \ln \relax (2)^{3} \ln \left (\ln \relax (2)\right ) x +96 \ln \relax (2)^{2} \ln \relax (3)^{2} x +96 \ln \relax (2)^{2} \ln \left (\ln \relax (2)\right )^{2} x -64 \ln \relax (2) \ln \relax (3)^{3} x +64 \ln \relax (2) \ln \left (\ln \relax (2)\right )^{3} x -64 \ln \relax (3)^{3} \ln \left (\ln \relax (2)\right ) x +96 \ln \relax (3)^{2} \ln \left (\ln \relax (2)\right )^{2} x -64 \ln \relax (3) \ln \left (\ln \relax (2)\right )^{3} x \right ) {\mathrm e}^{4 \,{\mathrm e}^{x}+4 x}}{16}\) | \(381\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.55, size = 291, normalized size = 11.19 \begin {gather*} -{\left (4 \, x {\left (\log \relax (3) - \log \relax (2) - \log \left (\log \relax (2)\right )\right )} e^{\left (4 \, x\right )} \log \left (\log \relax (x)\right )^{3} - x e^{\left (4 \, x\right )} \log \left (\log \relax (x)\right )^{4} - 6 \, {\left (\log \relax (3)^{2} - 2 \, {\left (\log \relax (3) - \log \left (\log \relax (2)\right )\right )} \log \relax (2) + \log \relax (2)^{2} - 2 \, \log \relax (3) \log \left (\log \relax (2)\right ) + \log \left (\log \relax (2)\right )^{2}\right )} x e^{\left (4 \, x\right )} \log \left (\log \relax (x)\right )^{2} + 4 \, {\left (\log \relax (3)^{3} + 3 \, {\left (\log \relax (3) - \log \left (\log \relax (2)\right )\right )} \log \relax (2)^{2} - \log \relax (2)^{3} - 3 \, \log \relax (3)^{2} \log \left (\log \relax (2)\right ) + 3 \, \log \relax (3) \log \left (\log \relax (2)\right )^{2} - \log \left (\log \relax (2)\right )^{3} - 3 \, {\left (\log \relax (3)^{2} - 2 \, \log \relax (3) \log \left (\log \relax (2)\right ) + \log \left (\log \relax (2)\right )^{2}\right )} \log \relax (2)\right )} x e^{\left (4 \, x\right )} \log \left (\log \relax (x)\right ) - {\left (\log \relax (3)^{4} - 4 \, {\left (\log \relax (3) - \log \left (\log \relax (2)\right )\right )} \log \relax (2)^{3} + \log \relax (2)^{4} - 4 \, \log \relax (3)^{3} \log \left (\log \relax (2)\right ) + 6 \, \log \relax (3)^{2} \log \left (\log \relax (2)\right )^{2} - 4 \, \log \relax (3) \log \left (\log \relax (2)\right )^{3} + \log \left (\log \relax (2)\right )^{4} + 6 \, {\left (\log \relax (3)^{2} - 2 \, \log \relax (3) \log \left (\log \relax (2)\right ) + \log \left (\log \relax (2)\right )^{2}\right )} \log \relax (2)^{2} - 4 \, {\left (\log \relax (3)^{3} - 3 \, \log \relax (3)^{2} \log \left (\log \relax (2)\right ) + 3 \, \log \relax (3) \log \left (\log \relax (2)\right )^{2} - \log \left (\log \relax (2)\right )^{3}\right )} \log \relax (2)\right )} x e^{\left (4 \, x\right )}\right )} e^{\left (4 \, e^{x}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.27, size = 24, normalized size = 0.92 \begin {gather*} x\,{\mathrm {e}}^{4\,x}\,{\mathrm {e}}^{4\,{\mathrm {e}}^x}\,{\ln \left (\frac {3}{2\,\ln \relax (2)\,\ln \relax (x)}\right )}^4 \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [F(-1)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________