Optimal. Leaf size=30 \[ e^{\frac {5+x}{3-e^{x (e+x)}-\frac {3-x}{x}+x}} \]
________________________________________________________________________________________
Rubi [F] time = 25.71, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {e^{\frac {-5 x-x^2}{3-4 x+e^{e x+x^2} x-x^2}} \left (-15-6 x-x^2+e^{e x+x^2} \left (-x^2+10 x^3+2 x^4+e \left (5 x^2+x^3\right )\right )\right )}{9-24 x+10 x^2+e^{2 e x+2 x^2} x^2+8 x^3+x^4+e^{e x+x^2} \left (6 x-8 x^2-2 x^3\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {\exp \left (\frac {x (5+x)}{-3-\left (-4+e^{x (e+x)}\right ) x+x^2}\right ) \left (-15-6 x-\left (1+e^{x (e+x)}-5 e^{1+e x+x^2}\right ) x^2+e^{x (e+x)} (10+e) x^3+2 e^{x (e+x)} x^4\right )}{\left (3+\left (-4+e^{x (e+x)}\right ) x-x^2\right )^2} \, dx\\ &=\int \left (\frac {\exp \left (\frac {x (5+x)}{-3-\left (-4+e^{x (e+x)}\right ) x+x^2}\right ) x \left (-1+(10+e) x+2 x^2\right )}{3-4 x+e^{x (e+x)} x-x^2}+\frac {\exp \left (\frac {x (5+x)}{-3-\left (-4+e^{x (e+x)}\right ) x+x^2}\right ) \left (-15-3 x-35 \left (1+\frac {3 e}{35}\right ) x^2+5 e^{1+e x+x^2} x^2+33 \left (1+\frac {4 e}{33}\right ) x^3+18 \left (1+\frac {e}{18}\right ) x^4+2 x^5\right )}{\left (3-4 x+e^{x (e+x)} x-x^2\right )^2}\right ) \, dx\\ &=\int \frac {\exp \left (\frac {x (5+x)}{-3-\left (-4+e^{x (e+x)}\right ) x+x^2}\right ) x \left (-1+(10+e) x+2 x^2\right )}{3-4 x+e^{x (e+x)} x-x^2} \, dx+\int \frac {\exp \left (\frac {x (5+x)}{-3-\left (-4+e^{x (e+x)}\right ) x+x^2}\right ) \left (-15-3 x-35 \left (1+\frac {3 e}{35}\right ) x^2+5 e^{1+e x+x^2} x^2+33 \left (1+\frac {4 e}{33}\right ) x^3+18 \left (1+\frac {e}{18}\right ) x^4+2 x^5\right )}{\left (3-4 x+e^{x (e+x)} x-x^2\right )^2} \, dx\\ &=\int \left (-\frac {15 \exp \left (\frac {x (5+x)}{-3-\left (-4+e^{x (e+x)}\right ) x+x^2}\right )}{\left (-3+4 x-e^{x (e+x)} x+x^2\right )^2}-\frac {3 \exp \left (\frac {x (5+x)}{-3-\left (-4+e^{x (e+x)}\right ) x+x^2}\right ) x}{\left (-3+4 x-e^{x (e+x)} x+x^2\right )^2}+\frac {5 \exp \left (1+e x+x^2+\frac {x (5+x)}{-3-\left (-4+e^{x (e+x)}\right ) x+x^2}\right ) x^2}{\left (-3+4 x-e^{x (e+x)} x+x^2\right )^2}-\frac {\exp \left (\frac {x (5+x)}{-3-\left (-4+e^{x (e+x)}\right ) x+x^2}\right ) (35+3 e) x^2}{\left (-3+4 x-e^{x (e+x)} x+x^2\right )^2}+\frac {\exp \left (\frac {x (5+x)}{-3-\left (-4+e^{x (e+x)}\right ) x+x^2}\right ) (33+4 e) x^3}{\left (-3+4 x-e^{x (e+x)} x+x^2\right )^2}+\frac {\exp \left (\frac {x (5+x)}{-3-\left (-4+e^{x (e+x)}\right ) x+x^2}\right ) (18+e) x^4}{\left (-3+4 x-e^{x (e+x)} x+x^2\right )^2}+\frac {2 \exp \left (\frac {x (5+x)}{-3-\left (-4+e^{x (e+x)}\right ) x+x^2}\right ) x^5}{\left (-3+4 x-e^{x (e+x)} x+x^2\right )^2}\right ) \, dx+\int \left (\frac {\exp \left (\frac {x (5+x)}{-3-\left (-4+e^{x (e+x)}\right ) x+x^2}\right ) x}{-3+4 x-e^{x (e+x)} x+x^2}-\frac {\exp \left (\frac {x (5+x)}{-3-\left (-4+e^{x (e+x)}\right ) x+x^2}\right ) (10+e) x^2}{-3+4 x-e^{x (e+x)} x+x^2}-\frac {2 \exp \left (\frac {x (5+x)}{-3-\left (-4+e^{x (e+x)}\right ) x+x^2}\right ) x^3}{-3+4 x-e^{x (e+x)} x+x^2}\right ) \, dx\\ &=2 \int \frac {\exp \left (\frac {x (5+x)}{-3-\left (-4+e^{x (e+x)}\right ) x+x^2}\right ) x^5}{\left (-3+4 x-e^{x (e+x)} x+x^2\right )^2} \, dx-2 \int \frac {\exp \left (\frac {x (5+x)}{-3-\left (-4+e^{x (e+x)}\right ) x+x^2}\right ) x^3}{-3+4 x-e^{x (e+x)} x+x^2} \, dx-3 \int \frac {\exp \left (\frac {x (5+x)}{-3-\left (-4+e^{x (e+x)}\right ) x+x^2}\right ) x}{\left (-3+4 x-e^{x (e+x)} x+x^2\right )^2} \, dx+5 \int \frac {\exp \left (1+e x+x^2+\frac {x (5+x)}{-3-\left (-4+e^{x (e+x)}\right ) x+x^2}\right ) x^2}{\left (-3+4 x-e^{x (e+x)} x+x^2\right )^2} \, dx-15 \int \frac {\exp \left (\frac {x (5+x)}{-3-\left (-4+e^{x (e+x)}\right ) x+x^2}\right )}{\left (-3+4 x-e^{x (e+x)} x+x^2\right )^2} \, dx+(-35-3 e) \int \frac {\exp \left (\frac {x (5+x)}{-3-\left (-4+e^{x (e+x)}\right ) x+x^2}\right ) x^2}{\left (-3+4 x-e^{x (e+x)} x+x^2\right )^2} \, dx+(-10-e) \int \frac {\exp \left (\frac {x (5+x)}{-3-\left (-4+e^{x (e+x)}\right ) x+x^2}\right ) x^2}{-3+4 x-e^{x (e+x)} x+x^2} \, dx+(18+e) \int \frac {\exp \left (\frac {x (5+x)}{-3-\left (-4+e^{x (e+x)}\right ) x+x^2}\right ) x^4}{\left (-3+4 x-e^{x (e+x)} x+x^2\right )^2} \, dx+(33+4 e) \int \frac {\exp \left (\frac {x (5+x)}{-3-\left (-4+e^{x (e+x)}\right ) x+x^2}\right ) x^3}{\left (-3+4 x-e^{x (e+x)} x+x^2\right )^2} \, dx+\int \frac {\exp \left (\frac {x (5+x)}{-3-\left (-4+e^{x (e+x)}\right ) x+x^2}\right ) x}{-3+4 x-e^{x (e+x)} x+x^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.16, size = 26, normalized size = 0.87 \begin {gather*} e^{\frac {x (5+x)}{-3-\left (-4+e^{x (e+x)}\right ) x+x^2}} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.61, size = 31, normalized size = 1.03 \begin {gather*} e^{\left (\frac {x^{2} + 5 \, x}{x^{2} - x e^{\left (x^{2} + x e\right )} + 4 \, x - 3}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 1.58, size = 53, normalized size = 1.77 \begin {gather*} e^{\left (\frac {x^{2}}{x^{2} - x e^{\left (x^{2} + x e\right )} + 4 \, x - 3} + \frac {5 \, x}{x^{2} - x e^{\left (x^{2} + x e\right )} + 4 \, x - 3}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.47, size = 27, normalized size = 0.90
method | result | size |
risch | \({\mathrm e}^{\frac {\left (5+x \right ) x}{-x \,{\mathrm e}^{x \left (x +{\mathrm e}\right )}+x^{2}+4 x -3}}\) | \(27\) |
norman | \(\frac {x^{2} {\mathrm e}^{\frac {-x^{2}-5 x}{x \,{\mathrm e}^{x \,{\mathrm e}+x^{2}}-x^{2}-4 x +3}}+4 x \,{\mathrm e}^{\frac {-x^{2}-5 x}{x \,{\mathrm e}^{x \,{\mathrm e}+x^{2}}-x^{2}-4 x +3}}-x \,{\mathrm e}^{x \,{\mathrm e}+x^{2}} {\mathrm e}^{\frac {-x^{2}-5 x}{x \,{\mathrm e}^{x \,{\mathrm e}+x^{2}}-x^{2}-4 x +3}}-3 \,{\mathrm e}^{\frac {-x^{2}-5 x}{x \,{\mathrm e}^{x \,{\mathrm e}+x^{2}}-x^{2}-4 x +3}}}{x^{2}-x \,{\mathrm e}^{x \,{\mathrm e}+x^{2}}+4 x -3}\) | \(182\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.49, size = 84, normalized size = 2.80 \begin {gather*} e^{\left (\frac {x e^{\left (x^{2} + x e\right )}}{x^{2} - x e^{\left (x^{2} + x e\right )} + 4 \, x - 3} + \frac {x}{x^{2} - x e^{\left (x^{2} + x e\right )} + 4 \, x - 3} + \frac {3}{x^{2} - x e^{\left (x^{2} + x e\right )} + 4 \, x - 3} + 1\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.49, size = 31, normalized size = 1.03 \begin {gather*} {\mathrm {e}}^{\frac {x^2+5\,x}{4\,x+x^2-x\,{\mathrm {e}}^{x^2}\,{\mathrm {e}}^{x\,\mathrm {e}}-3}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.99, size = 29, normalized size = 0.97 \begin {gather*} e^{\frac {- x^{2} - 5 x}{- x^{2} + x e^{x^{2} + e x} - 4 x + 3}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________