Optimal. Leaf size=18 \[ 4+e^{\frac {x}{-3+2 x+\log (25)}}+x^2 \]
________________________________________________________________________________________
Rubi [A] time = 0.26, antiderivative size = 31, normalized size of antiderivative = 1.72, number of steps used = 5, number of rules used = 4, integrand size = 76, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.053, Rules used = {6, 6688, 2230, 2209} \begin {gather*} x^2+e^{\frac {1}{2}-\frac {3-\log (25)}{2 (-2 x+3-\log (25))}} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 6
Rule 2209
Rule 2230
Rule 6688
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-24 x^2+8 x^3+e^{\frac {x}{-3+2 x+\log (25)}} (-3+\log (25))+\left (-12 x+8 x^2\right ) \log (25)+x \left (18+2 \log ^2(25)\right )}{9-12 x+4 x^2+(-6+4 x) \log (25)+\log ^2(25)} \, dx\\ &=\int \left (2 x+\frac {e^{\frac {x}{-3+2 x+\log (25)}} (-3+\log (25))}{(-3+2 x+\log (25))^2}\right ) \, dx\\ &=x^2+(-3+\log (25)) \int \frac {e^{\frac {x}{-3+2 x+\log (25)}}}{(-3+2 x+\log (25))^2} \, dx\\ &=x^2+(-3+\log (25)) \int \frac {e^{\frac {1}{2}-\frac {-3+\log (25)}{2 (-3+2 x+\log (25))}}}{(-3+2 x+\log (25))^2} \, dx\\ &=e^{\frac {1}{2}-\frac {3-\log (25)}{2 (3-2 x-\log (25))}}+x^2\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [B] time = 0.06, size = 37, normalized size = 2.06 \begin {gather*} 5^{\frac {1}{3-2 x-\log (25)}} e^{\frac {1}{2}+\frac {3}{2 (-3+2 x+\log (25))}}+x^2 \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.89, size = 18, normalized size = 1.00 \begin {gather*} x^{2} + e^{\left (\frac {x}{2 \, x + 2 \, \log \relax (5) - 3}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.36, size = 282, normalized size = 15.67 \begin {gather*} -\frac {\frac {32 \, x \log \relax (5)^{3}}{2 \, x + 2 \, \log \relax (5) - 3} - 8 \, \log \relax (5)^{3} - \frac {32 \, x e^{\left (\frac {x}{2 \, x + 2 \, \log \relax (5) - 3}\right )} \log \relax (5)}{2 \, x + 2 \, \log \relax (5) - 3} + \frac {32 \, x^{2} e^{\left (\frac {x}{2 \, x + 2 \, \log \relax (5) - 3}\right )} \log \relax (5)}{{\left (2 \, x + 2 \, \log \relax (5) - 3\right )}^{2}} + 8 \, e^{\left (\frac {x}{2 \, x + 2 \, \log \relax (5) - 3}\right )} \log \relax (5) - \frac {144 \, x \log \relax (5)^{2}}{2 \, x + 2 \, \log \relax (5) - 3} + 36 \, \log \relax (5)^{2} + \frac {48 \, x e^{\left (\frac {x}{2 \, x + 2 \, \log \relax (5) - 3}\right )}}{2 \, x + 2 \, \log \relax (5) - 3} - \frac {48 \, x^{2} e^{\left (\frac {x}{2 \, x + 2 \, \log \relax (5) - 3}\right )}}{{\left (2 \, x + 2 \, \log \relax (5) - 3\right )}^{2}} + \frac {216 \, x \log \relax (5)}{2 \, x + 2 \, \log \relax (5) - 3} - \frac {108 \, x}{2 \, x + 2 \, \log \relax (5) - 3} - 12 \, e^{\left (\frac {x}{2 \, x + 2 \, \log \relax (5) - 3}\right )} - 54 \, \log \relax (5) + 27}{4 \, {\left (\frac {4 \, x}{2 \, x + 2 \, \log \relax (5) - 3} - \frac {4 \, x^{2}}{{\left (2 \, x + 2 \, \log \relax (5) - 3\right )}^{2}} - 1\right )} {\left (2 \, \log \relax (5) - 3\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.14, size = 19, normalized size = 1.06
method | result | size |
risch | \(x^{2}+{\mathrm e}^{\frac {x}{2 \ln \relax (5)+2 x -3}}\) | \(19\) |
norman | \(\frac {\left (2 \ln \relax (5)-3\right ) x^{2}+\left (2 \ln \relax (5)-3\right ) {\mathrm e}^{\frac {x}{2 \ln \relax (5)+2 x -3}}+2 x^{3}+2 \,{\mathrm e}^{\frac {x}{2 \ln \relax (5)+2 x -3}} x}{2 \ln \relax (5)+2 x -3}\) | \(67\) |
derivativedivides | \(-\frac {\left (-4 \ln \relax (5)+6\right ) \left (-\frac {27 \left (2 \ln \relax (5)+2 x -3\right )^{2}}{4 \left (16 \ln \relax (5)^{2}-48 \ln \relax (5)+36\right ) \left (-\ln \relax (5)+\frac {3}{2}\right )^{2}}-\frac {27 \left (2 \ln \relax (5)+2 x -3\right )}{\left (16 \ln \relax (5)^{2}-48 \ln \relax (5)+36\right ) \left (-\ln \relax (5)+\frac {3}{2}\right )}-\frac {3 \,{\mathrm e}^{\frac {1}{2}+\frac {-\ln \relax (5)+\frac {3}{2}}{2 \ln \relax (5)+2 x -3}}}{4 \ln \relax (5)^{2}-12 \ln \relax (5)+9}+\frac {27 \ln \relax (5) \left (2 \ln \relax (5)+2 x -3\right )^{2}}{2 \left (16 \ln \relax (5)^{2}-48 \ln \relax (5)+36\right ) \left (-\ln \relax (5)+\frac {3}{2}\right )^{2}}-\frac {9 \ln \relax (5)^{2} \left (2 \ln \relax (5)+2 x -3\right )^{2}}{\left (16 \ln \relax (5)^{2}-48 \ln \relax (5)+36\right ) \left (-\ln \relax (5)+\frac {3}{2}\right )^{2}}+\frac {2 \ln \relax (5)^{3} \left (2 \ln \relax (5)+2 x -3\right )^{2}}{\left (16 \ln \relax (5)^{2}-48 \ln \relax (5)+36\right ) \left (-\ln \relax (5)+\frac {3}{2}\right )^{2}}+\frac {54 \ln \relax (5) \left (2 \ln \relax (5)+2 x -3\right )}{\left (16 \ln \relax (5)^{2}-48 \ln \relax (5)+36\right ) \left (-\ln \relax (5)+\frac {3}{2}\right )}-\frac {36 \ln \relax (5)^{2} \left (2 \ln \relax (5)+2 x -3\right )}{\left (16 \ln \relax (5)^{2}-48 \ln \relax (5)+36\right ) \left (-\ln \relax (5)+\frac {3}{2}\right )}+\frac {8 \ln \relax (5)^{3} \left (2 \ln \relax (5)+2 x -3\right )}{\left (16 \ln \relax (5)^{2}-48 \ln \relax (5)+36\right ) \left (-\ln \relax (5)+\frac {3}{2}\right )}+\frac {2 \ln \relax (5) {\mathrm e}^{\frac {1}{2}+\frac {-\ln \relax (5)+\frac {3}{2}}{2 \ln \relax (5)+2 x -3}}}{4 \ln \relax (5)^{2}-12 \ln \relax (5)+9}\right )}{2}\) | \(378\) |
default | \(-\frac {\left (-4 \ln \relax (5)+6\right ) \left (-\frac {27 \left (2 \ln \relax (5)+2 x -3\right )^{2}}{4 \left (16 \ln \relax (5)^{2}-48 \ln \relax (5)+36\right ) \left (-\ln \relax (5)+\frac {3}{2}\right )^{2}}-\frac {27 \left (2 \ln \relax (5)+2 x -3\right )}{\left (16 \ln \relax (5)^{2}-48 \ln \relax (5)+36\right ) \left (-\ln \relax (5)+\frac {3}{2}\right )}-\frac {3 \,{\mathrm e}^{\frac {1}{2}+\frac {-\ln \relax (5)+\frac {3}{2}}{2 \ln \relax (5)+2 x -3}}}{4 \ln \relax (5)^{2}-12 \ln \relax (5)+9}+\frac {27 \ln \relax (5) \left (2 \ln \relax (5)+2 x -3\right )^{2}}{2 \left (16 \ln \relax (5)^{2}-48 \ln \relax (5)+36\right ) \left (-\ln \relax (5)+\frac {3}{2}\right )^{2}}-\frac {9 \ln \relax (5)^{2} \left (2 \ln \relax (5)+2 x -3\right )^{2}}{\left (16 \ln \relax (5)^{2}-48 \ln \relax (5)+36\right ) \left (-\ln \relax (5)+\frac {3}{2}\right )^{2}}+\frac {2 \ln \relax (5)^{3} \left (2 \ln \relax (5)+2 x -3\right )^{2}}{\left (16 \ln \relax (5)^{2}-48 \ln \relax (5)+36\right ) \left (-\ln \relax (5)+\frac {3}{2}\right )^{2}}+\frac {54 \ln \relax (5) \left (2 \ln \relax (5)+2 x -3\right )}{\left (16 \ln \relax (5)^{2}-48 \ln \relax (5)+36\right ) \left (-\ln \relax (5)+\frac {3}{2}\right )}-\frac {36 \ln \relax (5)^{2} \left (2 \ln \relax (5)+2 x -3\right )}{\left (16 \ln \relax (5)^{2}-48 \ln \relax (5)+36\right ) \left (-\ln \relax (5)+\frac {3}{2}\right )}+\frac {8 \ln \relax (5)^{3} \left (2 \ln \relax (5)+2 x -3\right )}{\left (16 \ln \relax (5)^{2}-48 \ln \relax (5)+36\right ) \left (-\ln \relax (5)+\frac {3}{2}\right )}+\frac {2 \ln \relax (5) {\mathrm e}^{\frac {1}{2}+\frac {-\ln \relax (5)+\frac {3}{2}}{2 \ln \relax (5)+2 x -3}}}{4 \ln \relax (5)^{2}-12 \ln \relax (5)+9}\right )}{2}\) | \(378\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.45, size = 347, normalized size = 19.28 \begin {gather*} 2 \, {\left (\frac {2 \, \log \relax (5) - 3}{2 \, x + 2 \, \log \relax (5) - 3} + \log \left (2 \, x + 2 \, \log \relax (5) - 3\right )\right )} \log \relax (5)^{2} + x^{2} - 2 \, x {\left (2 \, \log \relax (5) - 3\right )} - 2 \, {\left (2 \, {\left (2 \, \log \relax (5) - 3\right )} \log \left (2 \, x + 2 \, \log \relax (5) - 3\right ) - 2 \, x + \frac {4 \, \log \relax (5)^{2} - 12 \, \log \relax (5) + 9}{2 \, x + 2 \, \log \relax (5) - 3}\right )} \log \relax (5) - 6 \, {\left (\frac {2 \, \log \relax (5) - 3}{2 \, x + 2 \, \log \relax (5) - 3} + \log \left (2 \, x + 2 \, \log \relax (5) - 3\right )\right )} \log \relax (5) + \frac {3}{2} \, {\left (4 \, \log \relax (5)^{2} - 12 \, \log \relax (5) + 9\right )} \log \left (2 \, x + 2 \, \log \relax (5) - 3\right ) + 6 \, {\left (2 \, \log \relax (5) - 3\right )} \log \left (2 \, x + 2 \, \log \relax (5) - 3\right ) - 6 \, x + \frac {2 \, e^{\left (-\frac {\log \relax (5)}{2 \, x + 2 \, \log \relax (5) - 3} + \frac {3}{2 \, {\left (2 \, x + 2 \, \log \relax (5) - 3\right )}} + \frac {1}{2}\right )} \log \relax (5)}{2 \, \log \relax (5) - 3} + \frac {8 \, \log \relax (5)^{3} - 36 \, \log \relax (5)^{2} + 54 \, \log \relax (5) - 27}{2 \, {\left (2 \, x + 2 \, \log \relax (5) - 3\right )}} + \frac {3 \, {\left (4 \, \log \relax (5)^{2} - 12 \, \log \relax (5) + 9\right )}}{2 \, x + 2 \, \log \relax (5) - 3} + \frac {9 \, {\left (2 \, \log \relax (5) - 3\right )}}{2 \, {\left (2 \, x + 2 \, \log \relax (5) - 3\right )}} - \frac {3 \, e^{\left (-\frac {\log \relax (5)}{2 \, x + 2 \, \log \relax (5) - 3} + \frac {3}{2 \, {\left (2 \, x + 2 \, \log \relax (5) - 3\right )}} + \frac {1}{2}\right )}}{2 \, \log \relax (5) - 3} + \frac {9}{2} \, \log \left (2 \, x + 2 \, \log \relax (5) - 3\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.06 \begin {gather*} \int \frac {18\,x+{\mathrm {e}}^{\frac {x}{2\,x+2\,\ln \relax (5)-3}}\,\left (2\,\ln \relax (5)-3\right )-2\,\ln \relax (5)\,\left (12\,x-8\,x^2\right )+8\,x\,{\ln \relax (5)}^2-24\,x^2+8\,x^3}{2\,\ln \relax (5)\,\left (4\,x-6\right )-12\,x+4\,{\ln \relax (5)}^2+4\,x^2+9} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.29, size = 15, normalized size = 0.83 \begin {gather*} x^{2} + e^{\frac {x}{2 x - 3 + 2 \log {\relax (5 )}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________