Optimal. Leaf size=29 \[ \frac {5}{\left (1+\frac {x \left (5+e^x+x\right )}{5-x}-\log (5)-\log (x)\right )^2} \]
________________________________________________________________________________________
Rubi [F] time = 26.47, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {1250-2000 x-100 x^2+140 x^3-10 x^4+e^x \left (-250 x-200 x^2+100 x^3-10 x^4\right )}{125 x+300 x^2+315 x^3+184 x^4+e^{3 x} x^4+63 x^5+12 x^6+x^7+\left (-375 x-525 x^2-270 x^3-42 x^4+9 x^5+3 x^6\right ) \log (5)+\left (375 x+150 x^2-30 x^3-18 x^4+3 x^5\right ) \log ^2(5)+\left (-125 x+75 x^2-15 x^3+x^4\right ) \log ^3(5)+e^{2 x} \left (15 x^3+12 x^4+3 x^5+\left (-15 x^3+3 x^4\right ) \log (5)\right )+e^x \left (75 x^2+120 x^3+78 x^4+24 x^5+3 x^6+\left (-150 x^2-90 x^3-6 x^4+6 x^5\right ) \log (5)+\left (75 x^2-30 x^3+3 x^4\right ) \log ^2(5)\right )+\left (-375 x-525 x^2-270 x^3-42 x^4+9 x^5+3 x^6+e^{2 x} \left (-15 x^3+3 x^4\right )+\left (750 x+300 x^2-60 x^3-36 x^4+6 x^5\right ) \log (5)+\left (-375 x+225 x^2-45 x^3+3 x^4\right ) \log ^2(5)+e^x \left (-150 x^2-90 x^3-6 x^4+6 x^5+\left (150 x^2-60 x^3+6 x^4\right ) \log (5)\right )\right ) \log (x)+\left (375 x+150 x^2-30 x^3-18 x^4+3 x^5+e^x \left (75 x^2-30 x^3+3 x^4\right )+\left (-375 x+225 x^2-45 x^3+3 x^4\right ) \log (5)\right ) \log ^2(x)+\left (-125 x+75 x^2-15 x^3+x^4\right ) \log ^3(x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {10 (5-x) \left (25-5 \left (7+e^x\right ) x-\left (9+5 e^x\right ) x^2+\left (1+e^x\right ) x^3\right )}{x \left (x^2+5 (1-\log (5))+x \left (4+e^x+\log (5)\right )+(-5+x) \log (x)\right )^3} \, dx\\ &=10 \int \frac {(5-x) \left (25-5 \left (7+e^x\right ) x-\left (9+5 e^x\right ) x^2+\left (1+e^x\right ) x^3\right )}{x \left (x^2+5 (1-\log (5))+x \left (4+e^x+\log (5)\right )+(-5+x) \log (x)\right )^3} \, dx\\ &=10 \int \left (\frac {-25-20 x+10 x^2-x^3}{x \left (e^x x+x^2+5 (1-\log (5))+4 x \left (1+\frac {\log (5)}{4}\right )-5 \log (x)+x \log (x)\right )^2}+\frac {(5-x)^2 \left (x^3+4 x \left (1-\frac {5 \log (5)}{4}\right )+10 \left (1-\frac {\log (5)}{2}\right )+3 x^2 \left (1+\frac {\log (5)}{3}\right )-5 \log (x)-5 x \log (x)+x^2 \log (x)\right )}{x \left (e^x x+x^2+5 (1-\log (5))+4 x \left (1+\frac {\log (5)}{4}\right )-5 \log (x)+x \log (x)\right )^3}\right ) \, dx\\ &=10 \int \frac {-25-20 x+10 x^2-x^3}{x \left (e^x x+x^2+5 (1-\log (5))+4 x \left (1+\frac {\log (5)}{4}\right )-5 \log (x)+x \log (x)\right )^2} \, dx+10 \int \frac {(5-x)^2 \left (x^3+4 x \left (1-\frac {5 \log (5)}{4}\right )+10 \left (1-\frac {\log (5)}{2}\right )+3 x^2 \left (1+\frac {\log (5)}{3}\right )-5 \log (x)-5 x \log (x)+x^2 \log (x)\right )}{x \left (e^x x+x^2+5 (1-\log (5))+4 x \left (1+\frac {\log (5)}{4}\right )-5 \log (x)+x \log (x)\right )^3} \, dx\\ &=10 \int \frac {(5-x)^2 \left (x^3+x (4-5 \log (5))-5 (-2+\log (5))+x^2 (3+\log (5))+\left (-5-5 x+x^2\right ) \log (x)\right )}{x \left (x^2+5 (1-\log (5))+x \left (4+e^x+\log (5)\right )+(-5+x) \log (x)\right )^3} \, dx+10 \int \left (-\frac {20}{\left (e^x x+x^2+5 (1-\log (5))+4 x \left (1+\frac {\log (5)}{4}\right )-5 \log (x)+x \log (x)\right )^2}-\frac {25}{x \left (e^x x+x^2+5 (1-\log (5))+4 x \left (1+\frac {\log (5)}{4}\right )-5 \log (x)+x \log (x)\right )^2}+\frac {10 x}{\left (e^x x+x^2+5 (1-\log (5))+4 x \left (1+\frac {\log (5)}{4}\right )-5 \log (x)+x \log (x)\right )^2}-\frac {x^2}{\left (e^x x+x^2+5 (1-\log (5))+4 x \left (1+\frac {\log (5)}{4}\right )-5 \log (x)+x \log (x)\right )^2}\right ) \, dx\\ &=-\left (10 \int \frac {x^2}{\left (e^x x+x^2+5 (1-\log (5))+4 x \left (1+\frac {\log (5)}{4}\right )-5 \log (x)+x \log (x)\right )^2} \, dx\right )+10 \int \left (\frac {10 \left (-x^3-4 x \left (1-\frac {5 \log (5)}{4}\right )-10 \left (1-\frac {\log (5)}{2}\right )-3 x^2 \left (1+\frac {\log (5)}{3}\right )+5 \log (x)+5 x \log (x)-x^2 \log (x)\right )}{\left (e^x x+x^2+5 (1-\log (5))+4 x \left (1+\frac {\log (5)}{4}\right )-5 \log (x)+x \log (x)\right )^3}+\frac {25 \left (x^3+4 x \left (1-\frac {5 \log (5)}{4}\right )+10 \left (1-\frac {\log (5)}{2}\right )+3 x^2 \left (1+\frac {\log (5)}{3}\right )-5 \log (x)-5 x \log (x)+x^2 \log (x)\right )}{x \left (e^x x+x^2+5 (1-\log (5))+4 x \left (1+\frac {\log (5)}{4}\right )-5 \log (x)+x \log (x)\right )^3}+\frac {x \left (x^3+4 x \left (1-\frac {5 \log (5)}{4}\right )+10 \left (1-\frac {\log (5)}{2}\right )+3 x^2 \left (1+\frac {\log (5)}{3}\right )-5 \log (x)-5 x \log (x)+x^2 \log (x)\right )}{\left (e^x x+x^2+5 (1-\log (5))+4 x \left (1+\frac {\log (5)}{4}\right )-5 \log (x)+x \log (x)\right )^3}\right ) \, dx+100 \int \frac {x}{\left (e^x x+x^2+5 (1-\log (5))+4 x \left (1+\frac {\log (5)}{4}\right )-5 \log (x)+x \log (x)\right )^2} \, dx-200 \int \frac {1}{\left (e^x x+x^2+5 (1-\log (5))+4 x \left (1+\frac {\log (5)}{4}\right )-5 \log (x)+x \log (x)\right )^2} \, dx-250 \int \frac {1}{x \left (e^x x+x^2+5 (1-\log (5))+4 x \left (1+\frac {\log (5)}{4}\right )-5 \log (x)+x \log (x)\right )^2} \, dx\\ &=-\left (10 \int \frac {x^2}{\left (e^x x+x^2+5 (1-\log (5))+4 x \left (1+\frac {\log (5)}{4}\right )-5 \log (x)+x \log (x)\right )^2} \, dx\right )+10 \int \frac {x \left (x^3+4 x \left (1-\frac {5 \log (5)}{4}\right )+10 \left (1-\frac {\log (5)}{2}\right )+3 x^2 \left (1+\frac {\log (5)}{3}\right )-5 \log (x)-5 x \log (x)+x^2 \log (x)\right )}{\left (e^x x+x^2+5 (1-\log (5))+4 x \left (1+\frac {\log (5)}{4}\right )-5 \log (x)+x \log (x)\right )^3} \, dx+100 \int \frac {x}{\left (e^x x+x^2+5 (1-\log (5))+4 x \left (1+\frac {\log (5)}{4}\right )-5 \log (x)+x \log (x)\right )^2} \, dx+100 \int \frac {-x^3-4 x \left (1-\frac {5 \log (5)}{4}\right )-10 \left (1-\frac {\log (5)}{2}\right )-3 x^2 \left (1+\frac {\log (5)}{3}\right )+5 \log (x)+5 x \log (x)-x^2 \log (x)}{\left (e^x x+x^2+5 (1-\log (5))+4 x \left (1+\frac {\log (5)}{4}\right )-5 \log (x)+x \log (x)\right )^3} \, dx-200 \int \frac {1}{\left (e^x x+x^2+5 (1-\log (5))+4 x \left (1+\frac {\log (5)}{4}\right )-5 \log (x)+x \log (x)\right )^2} \, dx-250 \int \frac {1}{x \left (e^x x+x^2+5 (1-\log (5))+4 x \left (1+\frac {\log (5)}{4}\right )-5 \log (x)+x \log (x)\right )^2} \, dx+250 \int \frac {x^3+4 x \left (1-\frac {5 \log (5)}{4}\right )+10 \left (1-\frac {\log (5)}{2}\right )+3 x^2 \left (1+\frac {\log (5)}{3}\right )-5 \log (x)-5 x \log (x)+x^2 \log (x)}{x \left (e^x x+x^2+5 (1-\log (5))+4 x \left (1+\frac {\log (5)}{4}\right )-5 \log (x)+x \log (x)\right )^3} \, dx\\ &=-\left (10 \int \frac {x^2}{\left (e^x x+x^2+5 (1-\log (5))+4 x \left (1+\frac {\log (5)}{4}\right )-5 \log (x)+x \log (x)\right )^2} \, dx\right )+10 \int \frac {x \left (x^3+x (4-5 \log (5))-5 (-2+\log (5))+x^2 (3+\log (5))+\left (-5-5 x+x^2\right ) \log (x)\right )}{\left (x^2+5 (1-\log (5))+x \left (4+e^x+\log (5)\right )+(-5+x) \log (x)\right )^3} \, dx+100 \int \frac {x}{\left (e^x x+x^2+5 (1-\log (5))+4 x \left (1+\frac {\log (5)}{4}\right )-5 \log (x)+x \log (x)\right )^2} \, dx+100 \int \left (\frac {x^3}{\left (-e^x x-x^2-5 (1-\log (5))-4 x \left (1+\frac {\log (5)}{4}\right )+5 \log (x)-x \log (x)\right )^3}+\frac {x^2 \log (x)}{\left (-e^x x-x^2-5 (1-\log (5))-4 x \left (1+\frac {\log (5)}{4}\right )+5 \log (x)-x \log (x)\right )^3}+\frac {x^2 (-3-\log (5))}{\left (e^x x+x^2+5 (1-\log (5))+4 x \left (1+\frac {\log (5)}{4}\right )-5 \log (x)+x \log (x)\right )^3}+\frac {5 (-2+\log (5))}{\left (e^x x+x^2+5 (1-\log (5))+4 x \left (1+\frac {\log (5)}{4}\right )-5 \log (x)+x \log (x)\right )^3}+\frac {x (-4+5 \log (5))}{\left (e^x x+x^2+5 (1-\log (5))+4 x \left (1+\frac {\log (5)}{4}\right )-5 \log (x)+x \log (x)\right )^3}+\frac {5 \log (x)}{\left (e^x x+x^2+5 (1-\log (5))+4 x \left (1+\frac {\log (5)}{4}\right )-5 \log (x)+x \log (x)\right )^3}+\frac {5 x \log (x)}{\left (e^x x+x^2+5 (1-\log (5))+4 x \left (1+\frac {\log (5)}{4}\right )-5 \log (x)+x \log (x)\right )^3}\right ) \, dx-200 \int \frac {1}{\left (e^x x+x^2+5 (1-\log (5))+4 x \left (1+\frac {\log (5)}{4}\right )-5 \log (x)+x \log (x)\right )^2} \, dx-250 \int \frac {1}{x \left (e^x x+x^2+5 (1-\log (5))+4 x \left (1+\frac {\log (5)}{4}\right )-5 \log (x)+x \log (x)\right )^2} \, dx+250 \int \frac {x^3+x (4-5 \log (5))-5 (-2+\log (5))+x^2 (3+\log (5))+\left (-5-5 x+x^2\right ) \log (x)}{x \left (x^2+5 (1-\log (5))+x \left (4+e^x+\log (5)\right )+(-5+x) \log (x)\right )^3} \, dx\\ &=\text {Rest of rules removed due to large latex content} \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 3.85, size = 33, normalized size = 1.14 \begin {gather*} \frac {5 (-5+x)^2}{\left (5+x^2-5 \log (5)+x \left (4+e^x+\log (5)\right )+(-5+x) \log (x)\right )^2} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.61, size = 145, normalized size = 5.00 \begin {gather*} \frac {5 \, {\left (x^{2} - 10 \, x + 25\right )}}{x^{4} + 8 \, x^{3} + x^{2} e^{\left (2 \, x\right )} + {\left (x^{2} - 10 \, x + 25\right )} \log \relax (5)^{2} + {\left (x^{2} - 10 \, x + 25\right )} \log \relax (x)^{2} + 26 \, x^{2} + 2 \, {\left (x^{3} + 4 \, x^{2} + {\left (x^{2} - 5 \, x\right )} \log \relax (5) + 5 \, x\right )} e^{x} + 2 \, {\left (x^{3} - x^{2} - 15 \, x - 25\right )} \log \relax (5) + 2 \, {\left (x^{3} - x^{2} + {\left (x^{2} - 5 \, x\right )} e^{x} + {\left (x^{2} - 10 \, x + 25\right )} \log \relax (5) - 15 \, x - 25\right )} \log \relax (x) + 40 \, x + 25} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.40, size = 199, normalized size = 6.86 \begin {gather*} \frac {5 \, {\left (x^{2} - 10 \, x + 25\right )}}{x^{4} + 2 \, x^{3} e^{x} + 2 \, x^{3} \log \relax (5) + 2 \, x^{2} e^{x} \log \relax (5) + x^{2} \log \relax (5)^{2} + 2 \, x^{3} \log \relax (x) + 2 \, x^{2} e^{x} \log \relax (x) + 2 \, x^{2} \log \relax (5) \log \relax (x) + x^{2} \log \relax (x)^{2} + 8 \, x^{3} + x^{2} e^{\left (2 \, x\right )} + 8 \, x^{2} e^{x} - 2 \, x^{2} \log \relax (5) - 10 \, x e^{x} \log \relax (5) - 10 \, x \log \relax (5)^{2} - 2 \, x^{2} \log \relax (x) - 10 \, x e^{x} \log \relax (x) - 20 \, x \log \relax (5) \log \relax (x) - 10 \, x \log \relax (x)^{2} + 26 \, x^{2} + 10 \, x e^{x} - 30 \, x \log \relax (5) + 25 \, \log \relax (5)^{2} - 30 \, x \log \relax (x) + 50 \, \log \relax (5) \log \relax (x) + 25 \, \log \relax (x)^{2} + 40 \, x - 50 \, \log \relax (5) - 50 \, \log \relax (x) + 25} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.08, size = 38, normalized size = 1.31
method | result | size |
risch | \(\frac {5 \left (x -5\right )^{2}}{\left (x \ln \relax (x )+x \ln \relax (5)+{\mathrm e}^{x} x +x^{2}-5 \ln \relax (x )-5 \ln \relax (5)+4 x +5\right )^{2}}\) | \(38\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 1.46, size = 147, normalized size = 5.07 \begin {gather*} \frac {5 \, {\left (x^{2} - 10 \, x + 25\right )}}{x^{4} + 2 \, x^{3} {\left (\log \relax (5) + 4\right )} + {\left (\log \relax (5)^{2} - 2 \, \log \relax (5) + 26\right )} x^{2} + x^{2} e^{\left (2 \, x\right )} + {\left (x^{2} - 10 \, x + 25\right )} \log \relax (x)^{2} - 10 \, {\left (\log \relax (5)^{2} + 3 \, \log \relax (5) - 4\right )} x + 2 \, {\left (x^{3} + x^{2} {\left (\log \relax (5) + 4\right )} - 5 \, x {\left (\log \relax (5) - 1\right )} + {\left (x^{2} - 5 \, x\right )} \log \relax (x)\right )} e^{x} + 25 \, \log \relax (5)^{2} + 2 \, {\left (x^{3} + x^{2} {\left (\log \relax (5) - 1\right )} - 5 \, x {\left (2 \, \log \relax (5) + 3\right )} + 25 \, \log \relax (5) - 25\right )} \log \relax (x) - 50 \, \log \relax (5) + 25} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.03 \begin {gather*} \int -\frac {2000\,x+{\mathrm {e}}^x\,\left (10\,x^4-100\,x^3+200\,x^2+250\,x\right )+100\,x^2-140\,x^3+10\,x^4-1250}{125\,x-{\ln \relax (5)}^3\,\left (-x^4+15\,x^3-75\,x^2+125\,x\right )-\ln \relax (5)\,\left (-3\,x^6-9\,x^5+42\,x^4+270\,x^3+525\,x^2+375\,x\right )-\ln \relax (x)\,\left (375\,x+{\ln \relax (5)}^2\,\left (-3\,x^4+45\,x^3-225\,x^2+375\,x\right )+{\mathrm {e}}^x\,\left (150\,x^2-\ln \relax (5)\,\left (6\,x^4-60\,x^3+150\,x^2\right )+90\,x^3+6\,x^4-6\,x^5\right )+{\mathrm {e}}^{2\,x}\,\left (15\,x^3-3\,x^4\right )+525\,x^2+270\,x^3+42\,x^4-9\,x^5-3\,x^6-\ln \relax (5)\,\left (6\,x^5-36\,x^4-60\,x^3+300\,x^2+750\,x\right )\right )+{\mathrm {e}}^{2\,x}\,\left (15\,x^3-\ln \relax (5)\,\left (15\,x^3-3\,x^4\right )+12\,x^4+3\,x^5\right )+{\ln \relax (5)}^2\,\left (3\,x^5-18\,x^4-30\,x^3+150\,x^2+375\,x\right )+x^4\,{\mathrm {e}}^{3\,x}-{\ln \relax (x)}^3\,\left (-x^4+15\,x^3-75\,x^2+125\,x\right )+{\ln \relax (x)}^2\,\left (375\,x+{\mathrm {e}}^x\,\left (3\,x^4-30\,x^3+75\,x^2\right )-\ln \relax (5)\,\left (-3\,x^4+45\,x^3-225\,x^2+375\,x\right )+150\,x^2-30\,x^3-18\,x^4+3\,x^5\right )+300\,x^2+315\,x^3+184\,x^4+63\,x^5+12\,x^6+x^7+{\mathrm {e}}^x\,\left ({\ln \relax (5)}^2\,\left (3\,x^4-30\,x^3+75\,x^2\right )-\ln \relax (5)\,\left (-6\,x^5+6\,x^4+90\,x^3+150\,x^2\right )+75\,x^2+120\,x^3+78\,x^4+24\,x^5+3\,x^6\right )} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 1.41, size = 219, normalized size = 7.55 \begin {gather*} \frac {5 x^{2} - 50 x + 125}{x^{4} + 2 x^{3} \log {\relax (x )} + 2 x^{3} \log {\relax (5 )} + 8 x^{3} + x^{2} e^{2 x} + x^{2} \log {\relax (x )}^{2} - 2 x^{2} \log {\relax (x )} + 2 x^{2} \log {\relax (5 )} \log {\relax (x )} - 2 x^{2} \log {\relax (5 )} + x^{2} \log {\relax (5 )}^{2} + 26 x^{2} - 10 x \log {\relax (x )}^{2} - 20 x \log {\relax (5 )} \log {\relax (x )} - 30 x \log {\relax (x )} - 30 x \log {\relax (5 )} - 10 x \log {\relax (5 )}^{2} + 40 x + \left (2 x^{3} + 2 x^{2} \log {\relax (x )} + 2 x^{2} \log {\relax (5 )} + 8 x^{2} - 10 x \log {\relax (x )} - 10 x \log {\relax (5 )} + 10 x\right ) e^{x} + 25 \log {\relax (x )}^{2} - 50 \log {\relax (x )} + 50 \log {\relax (5 )} \log {\relax (x )} - 50 \log {\relax (5 )} + 25 + 25 \log {\relax (5 )}^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________