Optimal. Leaf size=22 \[ e^3 \left (-\frac {37}{8}-5 x\right ) \left (1+\frac {1}{2} x (-1+\log (x))\right ) \]
________________________________________________________________________________________
Rubi [B] time = 0.02, antiderivative size = 51, normalized size of antiderivative = 2.32, number of steps used = 4, number of rules used = 2, integrand size = 25, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.080, Rules used = {12, 2313} \begin {gather*} \frac {5 e^3 x^2}{4}-\frac {1}{16} e^3 \left (40 x^2+37 x\right ) \log (x)+\frac {5}{4} e^3 (2-x)^2+\frac {37 e^3 x}{16} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 2313
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{16} \int \left (e^3 (-80+40 x)+e^3 (-37-80 x) \log (x)\right ) \, dx\\ &=\frac {5}{4} e^3 (2-x)^2+\frac {1}{16} e^3 \int (-37-80 x) \log (x) \, dx\\ &=\frac {5}{4} e^3 (2-x)^2-\frac {1}{16} e^3 \left (37 x+40 x^2\right ) \log (x)-\frac {1}{16} e^3 \int (-37-40 x) \, dx\\ &=\frac {5}{4} e^3 (2-x)^2+\frac {37 e^3 x}{16}+\frac {5 e^3 x^2}{4}-\frac {1}{16} e^3 \left (37 x+40 x^2\right ) \log (x)\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.00, size = 41, normalized size = 1.86 \begin {gather*} -\frac {43 e^3 x}{16}+\frac {5 e^3 x^2}{2}-\frac {37}{16} e^3 x \log (x)-\frac {5}{2} e^3 x^2 \log (x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.47, size = 29, normalized size = 1.32 \begin {gather*} -\frac {1}{16} \, {\left (40 \, x^{2} + 37 \, x\right )} e^{3} \log \relax (x) + \frac {1}{16} \, {\left (40 \, x^{2} - 43 \, x\right )} e^{3} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.14, size = 37, normalized size = 1.68 \begin {gather*} -\frac {1}{16} \, {\left (40 \, x^{2} \log \relax (x) - 20 \, x^{2} + 37 \, x \log \relax (x) - 37 \, x\right )} e^{3} + \frac {5}{4} \, {\left (x^{2} - 4 \, x\right )} e^{3} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.02, size = 29, normalized size = 1.32
method | result | size |
risch | \(\frac {{\mathrm e}^{3} \left (-40 x^{2}-37 x \right ) \ln \relax (x )}{16}+\frac {5 x^{2} {\mathrm e}^{3}}{2}-\frac {43 x \,{\mathrm e}^{3}}{16}\) | \(29\) |
norman | \(-\frac {43 x \,{\mathrm e}^{3}}{16}+\frac {5 x^{2} {\mathrm e}^{3}}{2}-\frac {37 x \,{\mathrm e}^{3} \ln \relax (x )}{16}-\frac {5 \,{\mathrm e}^{3} \ln \relax (x ) x^{2}}{2}\) | \(30\) |
default | \(\frac {{\mathrm e}^{3} \left (20 x^{2}-80 x \right )}{16}-\frac {5 \,{\mathrm e}^{3} \ln \relax (x ) x^{2}}{2}-\frac {37 x \,{\mathrm e}^{3} \ln \relax (x )}{16}+\frac {5 x^{2} {\mathrm e}^{3}}{4}+\frac {37 x \,{\mathrm e}^{3}}{16}\) | \(43\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.37, size = 38, normalized size = 1.73 \begin {gather*} \frac {1}{16} \, {\left (20 \, x^{2} - {\left (40 \, x^{2} + 37 \, x\right )} \log \relax (x) + 37 \, x\right )} e^{3} + \frac {5}{4} \, {\left (x^{2} - 4 \, x\right )} e^{3} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.26, size = 19, normalized size = 0.86 \begin {gather*} -\frac {x\,{\mathrm {e}}^3\,\left (37\,\ln \relax (x)-40\,x+40\,x\,\ln \relax (x)+43\right )}{16} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.14, size = 41, normalized size = 1.86 \begin {gather*} \frac {5 x^{2} e^{3}}{2} - \frac {43 x e^{3}}{16} + \left (- \frac {5 x^{2} e^{3}}{2} - \frac {37 x e^{3}}{16}\right ) \log {\relax (x )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________