Optimal. Leaf size=24 \[ \frac {1}{5} e^{\frac {x^2}{x+\frac {2}{x^2+\log (5)}}} \]
________________________________________________________________________________________
Rubi [F] time = 1.38, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {e^{\frac {x^4+x^2 \log (5)}{2+x^3+x \log (5)}} \left (8 x^3+x^6+\left (4 x+2 x^4\right ) \log (5)+x^2 \log ^2(5)\right )}{20+20 x^3+5 x^6+\left (20 x+10 x^4\right ) \log (5)+5 x^2 \log ^2(5)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e^{\frac {x^2 \left (x^2+\log (5)\right )}{2+x^3+x \log (5)}} \left (8 x^3+x^6+\left (4 x+2 x^4\right ) \log (5)+x^2 \log ^2(5)\right )}{5 \left (2+x^3+x \log (5)\right )^2} \, dx\\ &=\frac {1}{5} \int \frac {e^{\frac {x^2 \left (x^2+\log (5)\right )}{2+x^3+x \log (5)}} \left (8 x^3+x^6+\left (4 x+2 x^4\right ) \log (5)+x^2 \log ^2(5)\right )}{\left (2+x^3+x \log (5)\right )^2} \, dx\\ &=\frac {1}{5} \int \left (e^{\frac {x^2 \left (x^2+\log (5)\right )}{2+x^3+x \log (5)}}-\frac {4 e^{\frac {x^2 \left (x^2+\log (5)\right )}{2+x^3+x \log (5)}} (3+x \log (5))}{\left (2+x^3+x \log (5)\right )^2}+\frac {4 e^{\frac {x^2 \left (x^2+\log (5)\right )}{2+x^3+x \log (5)}}}{2+x^3+x \log (5)}\right ) \, dx\\ &=\frac {1}{5} \int e^{\frac {x^2 \left (x^2+\log (5)\right )}{2+x^3+x \log (5)}} \, dx-\frac {4}{5} \int \frac {e^{\frac {x^2 \left (x^2+\log (5)\right )}{2+x^3+x \log (5)}} (3+x \log (5))}{\left (2+x^3+x \log (5)\right )^2} \, dx+\frac {4}{5} \int \frac {e^{\frac {x^2 \left (x^2+\log (5)\right )}{2+x^3+x \log (5)}}}{2+x^3+x \log (5)} \, dx\\ &=\frac {1}{5} \int e^{\frac {x^2 \left (x^2+\log (5)\right )}{2+x^3+x \log (5)}} \, dx+\frac {4}{5} \int \frac {e^{\frac {x^2 \left (x^2+\log (5)\right )}{2+x^3+x \log (5)}}}{2+x^3+x \log (5)} \, dx-\frac {4}{5} \int \left (\frac {3 e^{\frac {x^2 \left (x^2+\log (5)\right )}{2+x^3+x \log (5)}}}{\left (2+x^3+x \log (5)\right )^2}+\frac {e^{\frac {x^2 \left (x^2+\log (5)\right )}{2+x^3+x \log (5)}} x \log (5)}{\left (2+x^3+x \log (5)\right )^2}\right ) \, dx\\ &=\frac {1}{5} \int e^{\frac {x^2 \left (x^2+\log (5)\right )}{2+x^3+x \log (5)}} \, dx+\frac {4}{5} \int \frac {e^{\frac {x^2 \left (x^2+\log (5)\right )}{2+x^3+x \log (5)}}}{2+x^3+x \log (5)} \, dx-\frac {12}{5} \int \frac {e^{\frac {x^2 \left (x^2+\log (5)\right )}{2+x^3+x \log (5)}}}{\left (2+x^3+x \log (5)\right )^2} \, dx-\frac {1}{5} (4 \log (5)) \int \frac {e^{\frac {x^2 \left (x^2+\log (5)\right )}{2+x^3+x \log (5)}} x}{\left (2+x^3+x \log (5)\right )^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [F] time = 2.73, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {e^{\frac {x^4+x^2 \log (5)}{2+x^3+x \log (5)}} \left (8 x^3+x^6+\left (4 x+2 x^4\right ) \log (5)+x^2 \log ^2(5)\right )}{20+20 x^3+5 x^6+\left (20 x+10 x^4\right ) \log (5)+5 x^2 \log ^2(5)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.55, size = 25, normalized size = 1.04 \begin {gather*} \frac {1}{5} \, e^{\left (\frac {x^{4} + x^{2} \log \relax (5)}{x^{3} + x \log \relax (5) + 2}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.12, size = 36, normalized size = 1.50 \begin {gather*} \frac {1}{5} \, e^{\left (\frac {x^{4}}{x^{3} + x \log \relax (5) + 2} + \frac {x^{2} \log \relax (5)}{x^{3} + x \log \relax (5) + 2}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.26, size = 25, normalized size = 1.04
method | result | size |
gosper | \(\frac {{\mathrm e}^{\frac {x^{2} \left (x^{2}+\ln \relax (5)\right )}{x \ln \relax (5)+x^{3}+2}}}{5}\) | \(25\) |
risch | \(\frac {{\mathrm e}^{\frac {x^{2} \left (x^{2}+\ln \relax (5)\right )}{x \ln \relax (5)+x^{3}+2}}}{5}\) | \(25\) |
norman | \(\frac {\frac {x^{3} {\mathrm e}^{\frac {x^{2} \ln \relax (5)+x^{4}}{x \ln \relax (5)+x^{3}+2}}}{5}+\frac {x \ln \relax (5) {\mathrm e}^{\frac {x^{2} \ln \relax (5)+x^{4}}{x \ln \relax (5)+x^{3}+2}}}{5}+\frac {2 \,{\mathrm e}^{\frac {x^{2} \ln \relax (5)+x^{4}}{x \ln \relax (5)+x^{3}+2}}}{5}}{x \ln \relax (5)+x^{3}+2}\) | \(95\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.58, size = 19, normalized size = 0.79 \begin {gather*} \frac {1}{5} \, e^{\left (x - \frac {2 \, x}{x^{3} + x \log \relax (5) + 2}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.30, size = 36, normalized size = 1.50 \begin {gather*} \frac {{\mathrm {e}}^{\frac {x^4}{x^3+\ln \relax (5)\,x+2}}\,{\mathrm {e}}^{\frac {x^2\,\ln \relax (5)}{x^3+\ln \relax (5)\,x+2}}}{5} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.50, size = 22, normalized size = 0.92 \begin {gather*} \frac {e^{\frac {x^{4} + x^{2} \log {\relax (5 )}}{x^{3} + x \log {\relax (5 )} + 2}}}{5} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________