Optimal. Leaf size=22 \[ \frac {3 x}{4 \left (4+e^x+x\right ) \left (-1+x+\log \left (x^2\right )\right )} \]
________________________________________________________________________________________
Rubi [F] time = 2.65, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-36-6 x-3 x^2+e^x \left (-9+3 x-3 x^2\right )+\left (12+e^x (3-3 x)\right ) \log \left (x^2\right )}{64-96 x+4 x^2+24 x^3+4 x^4+e^{2 x} \left (4-8 x+4 x^2\right )+e^x \left (32-56 x+16 x^2+8 x^3\right )+\left (-128+64 x+56 x^2+8 x^3+e^{2 x} (-8+8 x)+e^x \left (-64+48 x+16 x^2\right )\right ) \log \left (x^2\right )+\left (64+4 e^{2 x}+32 x+4 x^2+e^x (32+8 x)\right ) \log ^2\left (x^2\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {3 \left (-12-2 x-x^2-e^x \left (3-x+x^2\right )-\left (-4+e^x (-1+x)\right ) \log \left (x^2\right )\right )}{4 \left (4+e^x+x\right )^2 \left (1-x-\log \left (x^2\right )\right )^2} \, dx\\ &=\frac {3}{4} \int \frac {-12-2 x-x^2-e^x \left (3-x+x^2\right )-\left (-4+e^x (-1+x)\right ) \log \left (x^2\right )}{\left (4+e^x+x\right )^2 \left (1-x-\log \left (x^2\right )\right )^2} \, dx\\ &=\frac {3}{4} \int \left (\frac {x (3+x)}{\left (4+e^x+x\right )^2 \left (-1+x+\log \left (x^2\right )\right )}-\frac {3-x+x^2-\log \left (x^2\right )+x \log \left (x^2\right )}{\left (4+e^x+x\right ) \left (-1+x+\log \left (x^2\right )\right )^2}\right ) \, dx\\ &=\frac {3}{4} \int \frac {x (3+x)}{\left (4+e^x+x\right )^2 \left (-1+x+\log \left (x^2\right )\right )} \, dx-\frac {3}{4} \int \frac {3-x+x^2-\log \left (x^2\right )+x \log \left (x^2\right )}{\left (4+e^x+x\right ) \left (-1+x+\log \left (x^2\right )\right )^2} \, dx\\ &=-\left (\frac {3}{4} \int \left (\frac {3}{\left (4+e^x+x\right ) \left (-1+x+\log \left (x^2\right )\right )^2}-\frac {x}{\left (4+e^x+x\right ) \left (-1+x+\log \left (x^2\right )\right )^2}+\frac {x^2}{\left (4+e^x+x\right ) \left (-1+x+\log \left (x^2\right )\right )^2}-\frac {\log \left (x^2\right )}{\left (4+e^x+x\right ) \left (-1+x+\log \left (x^2\right )\right )^2}+\frac {x \log \left (x^2\right )}{\left (4+e^x+x\right ) \left (-1+x+\log \left (x^2\right )\right )^2}\right ) \, dx\right )+\frac {3}{4} \int \left (\frac {3 x}{\left (4+e^x+x\right )^2 \left (-1+x+\log \left (x^2\right )\right )}+\frac {x^2}{\left (4+e^x+x\right )^2 \left (-1+x+\log \left (x^2\right )\right )}\right ) \, dx\\ &=\frac {3}{4} \int \frac {x}{\left (4+e^x+x\right ) \left (-1+x+\log \left (x^2\right )\right )^2} \, dx-\frac {3}{4} \int \frac {x^2}{\left (4+e^x+x\right ) \left (-1+x+\log \left (x^2\right )\right )^2} \, dx+\frac {3}{4} \int \frac {\log \left (x^2\right )}{\left (4+e^x+x\right ) \left (-1+x+\log \left (x^2\right )\right )^2} \, dx-\frac {3}{4} \int \frac {x \log \left (x^2\right )}{\left (4+e^x+x\right ) \left (-1+x+\log \left (x^2\right )\right )^2} \, dx+\frac {3}{4} \int \frac {x^2}{\left (4+e^x+x\right )^2 \left (-1+x+\log \left (x^2\right )\right )} \, dx-\frac {9}{4} \int \frac {1}{\left (4+e^x+x\right ) \left (-1+x+\log \left (x^2\right )\right )^2} \, dx+\frac {9}{4} \int \frac {x}{\left (4+e^x+x\right )^2 \left (-1+x+\log \left (x^2\right )\right )} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.43, size = 22, normalized size = 1.00 \begin {gather*} \frac {3 x}{4 \left (4+e^x+x\right ) \left (-1+x+\log \left (x^2\right )\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.57, size = 29, normalized size = 1.32 \begin {gather*} \frac {3 \, x}{4 \, {\left (x^{2} + {\left (x - 1\right )} e^{x} + {\left (x + e^{x} + 4\right )} \log \left (x^{2}\right ) + 3 \, x - 4\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.37, size = 40, normalized size = 1.82 \begin {gather*} \frac {3 \, x}{4 \, {\left (x^{2} + x e^{x} + x \log \left (x^{2}\right ) + e^{x} \log \left (x^{2}\right ) + 3 \, x - e^{x} + 4 \, \log \left (x^{2}\right ) - 4\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [C] time = 0.12, size = 71, normalized size = 3.23
method | result | size |
risch | \(\frac {3 x}{2 \left (4+x +{\mathrm e}^{x}\right ) \left (-i \pi \mathrm {csgn}\left (i x \right )^{2} \mathrm {csgn}\left (i x^{2}\right )+2 i \pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right )^{2}-i \pi \mathrm {csgn}\left (i x^{2}\right )^{3}+2 x +4 \ln \relax (x )-2\right )}\) | \(71\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.50, size = 30, normalized size = 1.36 \begin {gather*} \frac {3 \, x}{4 \, {\left (x^{2} + {\left (x + 2 \, \log \relax (x) - 1\right )} e^{x} + 2 \, {\left (x + 4\right )} \log \relax (x) + 3 \, x - 4\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.05 \begin {gather*} \int -\frac {6\,x+\ln \left (x^2\right )\,\left ({\mathrm {e}}^x\,\left (3\,x-3\right )-12\right )+{\mathrm {e}}^x\,\left (3\,x^2-3\,x+9\right )+3\,x^2+36}{{\mathrm {e}}^{2\,x}\,\left (4\,x^2-8\,x+4\right )-96\,x+{\ln \left (x^2\right )}^2\,\left (32\,x+4\,{\mathrm {e}}^{2\,x}+{\mathrm {e}}^x\,\left (8\,x+32\right )+4\,x^2+64\right )+\ln \left (x^2\right )\,\left (64\,x+{\mathrm {e}}^x\,\left (16\,x^2+48\,x-64\right )+{\mathrm {e}}^{2\,x}\,\left (8\,x-8\right )+56\,x^2+8\,x^3-128\right )+4\,x^2+24\,x^3+4\,x^4+{\mathrm {e}}^x\,\left (8\,x^3+16\,x^2-56\,x+32\right )+64} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.36, size = 42, normalized size = 1.91 \begin {gather*} \frac {3 x}{4 x^{2} + 4 x \log {\left (x^{2} \right )} + 12 x + \left (4 x + 4 \log {\left (x^{2} \right )} - 4\right ) e^{x} + 16 \log {\left (x^{2} \right )} - 16} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________